Spider Silk: A Natural Marvel of Mechanical and Structural Strength

Loading...
Thumbnail Image

Date

2021

Journal Title

Journal ISSN

Volume Title

Publisher

African Journal of Biological Sciences

Abstract

The spider silk fibers have unique high performance properties that make it a desirable model for artificial fibers and its performance under benign conditions has important implications for biomimicry. It has tensile strengths comparable to steel and some are nearly as elastic as rubber on a weight to weight basis. The spider spins its silk at ambient temperatures, low pressures and with water as solvent. Spiders are ectotherms and the ambient temperature affects the spinning speed and the mechanical and structural properties of the silk spun. The high cytocompatibility and low immunogenicity of spider silk fibers make them well suited for biomaterial products such as nerve conduits. Spider silk proteins have been shown to be soluble in ionic liquids, thus once soluble, they can be processed into new biomaterials such as films, gels, porous sponges, bone tissue engineering. The spider silk chains with a fixed molecular weight decreases exponentially with the UV irradiation time, since UV irradiation causes the chemical bonds in the protein chains to undergo cleavage. This paper reviews related literature on the spider silk spinning process, conditions and their effects on structure, mechanical properties of spider silk and its resistance to UV degradation. As a bonus, a brief review of the biotechnological production of recombinant spider silk us presented.

Description

Research Article

Keywords

Spider Silk, Dragline, Spidroins, Microstructures, Recombinant, Mechanical S Trength

Citation

Jane, G., & Kuria, K. P. (2021). Spider silk: A natural marvel of mechanical and structural strength. African Journal of Biological Sciences, 3(4), 1-16.

Collections