Browsing by Author "Yu, Xiaqing"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated β-Carotene Accumulation in the Endocarp of Cucumber (Cucumis sativus L.) Fruit(MDPI, 2022) Obel, Hesbon Ochieng; Cheng, Chunyan; Li, Ying; Tian, Zhen; Njogu, Martin Kagiki; Li, Ji; Lou, Qunfeng; Yu, Xiaqing; Yang, Zhengan; Ogweno, Joshua Otieno; Chen, Jinfeng; ; ;Carotenoids are indispensable to plants and essential for human nutrition and health. Carotenoid contents are strongly influenced by light through light-responsive genes such as B-Box (BBX) genes. BBX proteins, a class of zinc-finger transcription factors, mediate many light-signaling pathways, leading to the biosynthesis of important metabolites in plants. However, the identification of the BBX gene family and expression analysis in response to photoperiod-mediated carotenoid accumulation in cucumber remains unexplored. We performed a genome-wide study and determined the expression of cucumber BBX genes (hereafter referred to as CsaBBXs genes) in the endocarp of Xishuangbanna cucumber fruit (a special type of cucumber accumulating a high level of β-carotene in the endocarp) using an RNA-seq analysis of plants previously subjected to two photoperiodic conditions. Here, 26 BBX family genes were identified in the cucumber genome and named serially CsaBBX1 through CsaBBX26. We characterized CsaBBX genes in terms of their phylogenetic relationships, exon-intron structures, cis-acting elements, and syntenic relationships with Arabidopsis thaliana (L.) Heynh. RNA-seq analysis revealed a varied expression of CsaBBX genes under photoperiod treatment. The analysis of CsaBBXs genes revealed a strong positive correlation between CsaBBX17 and carotenoid biosynthetic pathway genes (phytoene synthase, ζ-carotene desaturase, lycopene ε-cyclase, β-carotene hydroxylase-1), thus suggesting its involvement in β-carotene biosynthesis. Additionally, nine CsaBBX genes (CsaBBX 4, 5, 7, 9, 11, 13, 15, 17 and 22) showed a significant positive correlation with β-carotene content. The selected CsaBBX genes were verified by qRT-PCR and confirmed the validity of RNA-seq data. The results of this study established the genome-wide analysis of the cucumber BBX family and provide a framework for understanding their biological role in carotenoid accumulation and photoperiodic responses. Further investigations of CsaBBX genes are vital since they are promising candidate genes for the functional analysis of carotenoid biosynthesis and can provide genetic tools for the molecular breeding of carotenoids in plants.Item Transcriptomic and Physiological Analyses Reveal Potential Genes Involved in Photoperiod-Regulated β-Carotene Accumulation Mechanisms in the Endocarp of Cucumber (Cucumis sativus L.) Fruit(MDPI, 2022-10-21) Obel, Hesbon Ochieng; Cheng, Chunyan; Tian, Zhen; Njogu, Martin Kagiki; Li, Ji; Du, Shengli; Lou, Qunfeng; Zhou, Junguo; Yu, Xiaqing; Ogweno, Joshua Otieno; Chen, JinfengThe accumulation of carotenoids in plants is a key nutritional quality in many horticultural crops. Although the structural genes encoding the biosynthetic enzymes are well-characterized, little is known regarding photoperiod-mediated carotenoid accumulation in the fruits of some horticultural crops. Herein, we performed physiological and transcriptomic analyses using two cucumber genotypes, SWCC8 (XIS-orange-fleshed and photoperiod-sensitive) and CC3 (white-fleshed and photoperiod-non-sensitive), established under two photoperiod conditions (8L/16D vs. 12L/12D) at four fruit developmental stages. Day-neutral treatments significantly increased fruit β-carotene content by 42.1% compared to short day (SD) treatments in SWCC8 at 40 DAP with no significant changes in CC3. Day-neutral condition elevated sugar levels of fruits compared to short-day treatments. According to GO and KEGG analyses, the predominantly expressed genes were related to photosynthesis, carotenoid biosynthesis, plant hormone signaling, circadian rhythms, and carbohydrates. Consistent with β-carotene accumulation in SWCC8, the day-neutral condition elevated the expression of key carotenoid biosynthesis genes such as PSY1, PDS, ZDS1, LYCB, and CHYB1 during later stages between 30 to 40 days of fruit development. Compared to SWCC8, CC3 showed an expression of DEGs related to carotenoid cleavage and oxidative stresses, signifying reduced β-carotene levels in CC3 cucumber. Further, a WGCNA analysis revealed co-expression between carbohydrate-related genes (pentose-phosphatase synthase, β-glucosidase, and trehalose-6-phosphatase), photoperiod-signaling genes (LHY, APRR7/5, FKF1, PIF3, COP1, GIGANTEA, and CK2) and carotenoid-biosynthetic genes, thus suggesting that a cross-talk mechanism between carbohydrates and light-related genes induces β-carotene accumulation. The results highlighted herein provide a framework for future gene functional analyses and molecular breeding towards enhanced carotenoid accumulation in edible plant organs.