Browsing by Author "Wang, X"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Genome-Wide Identification of GASA Gene Family in Ten Cucurbitaceae Species and Expression Analysis in Cucumber(MDPI, 2022) Zhang, K; Hu, Y; Yang, D; Yan, C; Li, N; Li, Z; Njogu, M. K; Wang, X; Jia, LGibberellic acid-stimulated in Arabidopsis (GASA), a unique small molecular protein of plants, plays an essential role in plant growth and development. The GASA family genes have been identified and studied in many plants. However, the identification of GASA gene family in Cucurbitaceae species has not been reported yet. Therefore, in this study, based on the available genome information on the Cucurbitaceae species, the GASA family genes in 10 Cucurbitaceae species including cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita moschata), wax gourd (Benincasa hispida), sponge gourd (Luffa cylindrica), bottle gourd (Lagenaria siceraria), bitter gourd (Momordica charantia), chayote (Sechium edule), and snake gourd (Trichosanthes anguina) were identified with bioinformatics methods. To understand the molecular functions of GASA genes, the expression pattern analysis of cucumber GASA family genes in different tissues and stress responses were also analyzed. The results showed that a total of 114 GASA genes were identified in the 10 Cucurbitaceae species, which were divided into three subfamilies. Synteny analysis of GASA genes among cucumber, Arabidopsis and rice showed that nine cucumber GASA genes were colinear with 12 Arabidopsis GASA genes, and six cucumber GASA genes were colinear with six rice GASA genes. The cis-acting elements analysis implied that the cucumber GASA genes contained many cis-elements associated with stress and hormone response. Tissue-specific expression analysis of cucumber GASA family genes revealed that only the CsaV3_2G029490 gene was lowly or not expressed in all tissues, the CsaV3_3G041480 gene was highly expressed in all tissues, and the other seven GASA genes showed tissue-specific expression patterns. Furthermore, nine cucumber GASA family genes exhibited different degrees of regulatory response under GA, abiotic and biotic stresses. Two cucumber GASA genes, CsaV3_3G042060 and CsaV3_3G041480, were differentially expressed under multiple biotic and abiotic stresses, which indicated that these two GASA genes play important roles in the growth and development of cucumber.Item Integrated Analysis of Transcriptome and Metabolome Reveals New Insights into the Formation of Purple Leaf Veins and Leaf Edge Cracks in Brassica juncea(MDPI, 2022) Zhang, K; Yang, D; Hu, Y; Njogu, M. K; Qian, J; Jia, L; Yan, C; Li, Z; Wang, X; Wang, LPurple leaf veins and leaf edge cracks comprise the typical leaf phenotype of Brassica juncea; however, the molecular mechanisms and metabolic pathways of the formation of purple leaf veins and leaf edge cracks remain unclear. In this study, transcriptome and metabolome analyses were conducted to explore the regulation pathway of purple leaf vein and leaf edge crack formation based on four mustard samples that showed different leaf colors and degrees of cracking. The results showed genes with higher expression in purple leaf veins were mainly enriched in the flavonoid biosynthesis pathway. Integrating related genes and metabolites showed that the highly expressed genes of ANS (BjuA004031, BjuB014115, BjuB044852, and BjuO009605) and the excessive accumulation of dihydrokaempferol and dihydroquercetin contributed to the purple leaf veins by activating the synthetic pathways of pelargonidin-based anthocyanins and delphinidin-based anthocyanins. Meanwhile, “alpha-farnesene synthase activity” and “glucan endo-1, 3-beta-D-glucosidase activity” related to the adversity were mainly enriched in the serrated and lobed leaves, indicating that the environmental pressure was the dominant factor controlling the change in leaf shape. Overall, these results provided new insights into the regulation pathways for formation of purple leaf veins and leaf edge cracks, which could better accelerate the theoretical research on purple leaf vein color and leaf edge cracks in mustard.