Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Too, Edna Chebet"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    The Effect of Adaptive Learning Rate on the Accuracy of Neural Networks
    ((IJACSA) International Journal of Advanced Computer Science and Applications, 2021) Jepkoech, Jennifer; Mugo, David Muchangi; Kenduiywo, Benson K.; Too, Edna Chebet
    Learning rates in gradient descent algorithms have significant effects especially on the accuracy of a Capsule Neural Network (CNN). Choosing an appropriate learning rate is still an issue to date. Many developers still have a problem in selecting a learning rate for CNN leading to low accuracies in classification. This gap motivated this study to assess the effect of learning rate on the accuracy of a developed (CNN). There are no predefined learning rates in CNN and therefore it is hard for researchers to know what learning rate will give good results. This work, therefore, focused on assessing the effect of learning rate on the accuracy of a CNN by using different learning rates and observing the best performance. The contribution of this work is to give an appropriate learning rate for CNNs to improve accuracy during classification. This work has assessed the effect of different learning rates and came up with the most appropriate learning rate for CNN plant leaf disease classification. Part of the images used in this work was from the PlantVillage dataset while others were from the Nepal database. The images were pre-processed then subjected to the original CNN model for classification. When the learning rate was 0.0001, the best performance was 99.4% on testing and 100% on training. When the learning rate was 0.00001, the highest performance was 97% on testing and 99.9% on training. The lowest performance observed was 81% accuracy on testing and 99% on training when the learning rate was 0.001. This work observed that CNN was able to achieve the highest accuracy with a learning rate of 0.0001. The best Convolutional Neural Network accuracy observed was 98% on testing and 100% on training when the learning rate was 0.0001.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback