Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Qian, J"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Integrated Analysis of Transcriptome and Metabolome Reveals New Insights into the Formation of Purple Leaf Veins and Leaf Edge Cracks in Brassica juncea
    (MDPI, 2022) Zhang, K; Yang, D; Hu, Y; Njogu, M. K; Qian, J; Jia, L; Yan, C; Li, Z; Wang, X; Wang, L
    Purple leaf veins and leaf edge cracks comprise the typical leaf phenotype of Brassica juncea; however, the molecular mechanisms and metabolic pathways of the formation of purple leaf veins and leaf edge cracks remain unclear. In this study, transcriptome and metabolome analyses were conducted to explore the regulation pathway of purple leaf vein and leaf edge crack formation based on four mustard samples that showed different leaf colors and degrees of cracking. The results showed genes with higher expression in purple leaf veins were mainly enriched in the flavonoid biosynthesis pathway. Integrating related genes and metabolites showed that the highly expressed genes of ANS (BjuA004031, BjuB014115, BjuB044852, and BjuO009605) and the excessive accumulation of dihydrokaempferol and dihydroquercetin contributed to the purple leaf veins by activating the synthetic pathways of pelargonidin-based anthocyanins and delphinidin-based anthocyanins. Meanwhile, “alpha-farnesene synthase activity” and “glucan endo-1, 3-beta-D-glucosidase activity” related to the adversity were mainly enriched in the serrated and lobed leaves, indicating that the environmental pressure was the dominant factor controlling the change in leaf shape. Overall, these results provided new insights into the regulation pathways for formation of purple leaf veins and leaf edge cracks, which could better accelerate the theoretical research on purple leaf vein color and leaf edge cracks in mustard.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback