Browsing by Author "Njoroge, G."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Demystifying Mathematics: Handling Learning Difficulties in Mathematics among Low Achievers in Kenyan Schools(Journal of Language, Technology & Entrepreneurship in Africa, 2022) Njoroge, G.Mathematics is a compulsory subject in both primary and secondary schools in Kenya. However, learners’ poor performance in the subject in Kenya national examinations year in year out remains a serious concern for teachers of Mathematics, parents, curriculum developers, and the general public. This is particularly worrying because of the importance attached to the subject in national development hence the need to find out what could be affecting learning of Mathematics in Kenyan schools. The research on which this paper is based sought to examine the factors that influence performance in Mathematics in Kenyan schools; identify the characteristics of Mathematics learning disabilities; determine how the learners with such learning disabilities can be assessed and identified and interventions for these difficulties implemented. A case study was undertaken on class six learners in a primary school in Nairobi County. The tools used for the research were: classroom observations and an Individualized Education Program (IEP) developed by the teachers with the help of the researcher. This paper therefore highlights the findings from the research, discusses the implications of the findings and suggests the way forward as far as teaching, learning and assessment of Mathematics in Kenyan schools is concerned. Perhaps with the application of the right interventions, poor performance in Mathematics in the national examinations in Kenya will be a thing of the past.Item Modelling Plant Growth Based on Gompertz, Logistic Curve, Extreme Gradient Boosting and Light Gradient Boosting Models Using High Dimensional Image Derived Maize (Zea mays L.) Phenomic Data(Science and Education Publishing, 2022) Gachoki, P.; Muraya, M.; Njoroge, G.Modelling of plant growth is vital for hypotheses testing and carrying out virtual plant growth and development experiments, which may otherwise take a long time under field conditions. Modelling of plant growth has been aggravated by new phenotyping platforms that generate high dimensional data non-destructively over the entire growth time of a plant using a set of camera system. Such platforms generate high-throughput phenomic data, which is complex and constitute many features collected at multiple growth points for the same plant. However, the classical models are limited in that they can only model a single feature at a time. The objective of this study was to apply dynamic plant growth models that could be used to dissect complex relationships between plant growth and development using several modelling strategies. These included sigmoid, light GBM and XGBoost models. The image derived phenomic data was obtained from the Leibniz Institute of Plant Genetics and Crop Plant Research Gatersleben, Germany. The models were fitted using R statistical software and compared based on RMSE, R-squared, AIC and BIC performance metrics. The results showed that the XGBoost (RMSE = 2.1641) and Light GBM (RMSE = 2.7776) performed better than the Gompertz (RMSE = 3.8378) and the logistic function (RMSE = 3.8378) models in modelling maize plant growth. The XGBoost model (RMSE = 2.1641) showed better performance than Light GBM model (RMSE = 2.7776) in modelling maize plant growth. The Gompertz model using plant volume had AIC and BIC values for 139738.3 and 139763.4, respectively. The Gompertz model for plant side area had AIC and BIC values for 98436.15 and 98461.31, respectively. The logistic function model for plant volume had AIC and BIC values for 139749.2 and 139774.4, respectively. The logistic function model for plant side area had AIC and BIC values for 98415.95 and 98441.11, respectively. The Gompertz model and logistic function models showed almost the same performance in modelling maize plant growth. The non-parametric models, the XGBoost and light GBM, were found to perform better than the classical models (Gompertz and logistic functions) in modelling maize plant growth. Therefore, the study recommends the use of XGBoost as a generic model to fit high dimensional and complex phenotypic data in modelling plant growth and prediction of plant biomass yield at different growth points.