Browsing by Author "Njogu, Martin Kagiki"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Fine Mapping and Transcriptome Analysis of Virescent Leaf Gene v-2 in Cucumber (Cucumis sativus L.)(Frontiers in Plant Science, 2020) Zhang, Kaijing; Li, Ying; Zhu, Wenwei; Wei, Yifan; Njogu, Martin Kagiki; Lou, Qunfeng; Li, Ji; Chen, Jinfeng; ; ;Leaf color mutants are the ideal materials to explore the pathways of chlorophyll metabolism, chloroplast development and photosynthesis system. In this study, a new virescent leaf mutant 104Y was identified by spontaneous mutation, whose cotyledon and upper five true leaves were yellow color. The yellow true leaves gradually turned green from top to bottom with increased chlorophyll contents. Genetic analysis indicated that the virescent leaf was controlled by one single recessive gene v-2, which was accurately mapped into 36.0–39.7 Mb interval on chromosome 3 by using BSA-seq and linkage analysis. Fine mapping analysis further narrowed v-2 into 73-kb genomic region including eight genes with BC1 and F2 populations. Through BSA-seq and cDNA sequencing analysis, only one nonsynonymous mutation existed in the Csa3G890020 gene encoding auxin F-box protein was identified, which was predicted as the candidate gene controlling virescent leaf. Comparative transcriptome analysis and quantitative real-time PCR analysis revealed that the expression level of Csa3G890020 was not changed between EC1 and 104Y. However, RNA-seq analysis identified that the key genes involved in chlorophyll biosynthesis and auxin signaling transduction network were mainly down-regulated in 104Y compared with EC1, which indicated that the regulatory functions of Csa3G890020 could be performed at post-transcriptional level rather than transcriptional level. This is the first report to map-based clone an auxin F-box protein gene related to virescent leaf in cucumber. The results will exhibit a new insight into the chlorophyll biosynthesis regulated by auxin signaling transduction network.Item Genome-Wide Identification of GASA Gene Family in Ten Cucurbitaceae Species and Expression Analysis in Cucumber(MDPI, 2022) Zhang, Kaijing; Hu, Yuchao; Yang, Dekun; Yan, Congsheng; Li, Nanyang; Li, Ziang; Njogu, Martin Kagiki; Wang, Xing; Jia, Li; ; ;Gibberellic acid-stimulated in Arabidopsis (GASA), a unique small molecular protein of plants, plays an essential role in plant growth and development. The GASA family genes have been identified and studied in many plants. However, the identification of GASA gene family in Cucurbitaceae species has not been reported yet. Therefore, in this study, based on the available genome information on the Cucurbitaceae species, the GASA family genes in 10 Cucurbitaceae species including cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita moschata), wax gourd (Benincasa hispida), sponge gourd (Luffa cylindrica), bottle gourd (Lagenaria siceraria), bitter gourd (Momordica charantia), chayote (Sechium edule), and snake gourd (Trichosanthes anguina) were identified with bioinformatics methods. To understand the molecular functions of GASA genes, the expression pattern analysis of cucumber GASA family genes in different tissues and stress responses were also analyzed. The results showed that a total of 114 GASA genes were identified in the 10 Cucurbitaceae species, which were divided into three subfamilies. Synteny analysis of GASA genes among cucumber, Arabidopsis and rice showed that nine cucumber GASA genes were colinear with 12 Arabidopsis GASA genes, and six cucumber GASA genes were colinear with six rice GASA genes. The cis-acting elements analysis implied that the cucumber GASA genes contained many cis-elements associated with stress and hormone response. Tissue-specific expression analysis of cucumber GASA family genes revealed that only the CsaV3_2G029490 gene was lowly or not expressed in all tissues, the CsaV3_3G041480 gene was highly expressed in all tissues, and the other seven GASA genes showed tissue-specific expression patterns. Furthermore, nine cucumber GASA family genes exhibited different degrees of regulatory response under GA, abiotic and biotic stresses. Two cucumber GASA genes, CsaV3_3G042060 and CsaV3_3G041480, were differentially expressed under multiple biotic and abiotic stresses, which indicated that these two GASA genes play important roles in the growth and development of cucumber.Item Genome-Wide Identification of GASA Gene Family in Ten Cucurbitaceae Species and Expression Analysis in Cucumber(MDPI, 2022-08-22) Zhang, Kaijing; Hu, Yuchao; Yang, Dekun; Yan, Congsheng; Li, Nanyang; Li, Ziang; Njogu, Martin Kagiki; Wang, Xing; Jia, LiGibberellic acid-stimulated in Arabidopsis (GASA), a unique small molecular protein of plants, plays an essential role in plant growth and development. The GASA family genes have been identified and studied in many plants. However, the identification of GASA gene family in Cucurbitaceae species has not been reported yet. Therefore, in this study, based on the available genome information on the Cucurbitaceae species, the GASA family genes in 10 Cucurbitaceae species including cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), pumpkin (Cucurbita moschata), wax gourd (Benincasa hispida), sponge gourd (Luffa cylindrica), bottle gourd (Lagenaria siceraria), bitter gourd (Momordica charantia), chayote (Sechium edule), and snake gourd (Trichosanthes anguina) were identified with bioinformatics methods. To understand the molecular functions of GASA genes, the expression pattern analysis of cucumber GASA family genes in different tissues and stress responses were also analyzed. The results showed that a total of 114 GASA genes were identified in the 10 Cucurbitaceae species, which were divided into three subfamilies. Synteny analysis of GASA genes among cucumber, Arabidopsis and rice showed that nine cucumber GASA genes were colinear with 12 Arabidopsis GASA genes, and six cucumber GASA genes were colinear with six rice GASA genes. The cis-acting elements analysis implied that the cucumber GASA genes contained many cis-elements associated with stress and hormone response. Tissue-specific expression analysis of cucumber GASA family genes revealed that only the CsaV3_2G029490 gene was lowly or not expressed in all tissues, the CsaV3_3G041480 gene was highly expressed in all tissues, and the other seven GASA genes showed tissue-specific expression patterns. Furthermore, nine cucumber GASA family genes exhibited different degrees of regulatory response under GA, abiotic and biotic stresses. Two cucumber GASA genes, CsaV3_3G042060 and CsaV3_3G041480, were differentially expressed under multiple biotic and abiotic stresses, which indicated that these two GASA genes play important roles in the growth and development of cucumber.Item Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated β-Carotene Accumulation in the Endocarp of Cucumber (Cucumis sativus L.) Fruit(MDPI, 2022) Obel, Hesbon Ochieng; Cheng, Chunyan; Li, Ying; Tian, Zhen; Njogu, Martin Kagiki; Li, Ji; Lou, Qunfeng; Yu, Xiaqing; Yang, Zhengan; Ogweno, Joshua Otieno; Chen, Jinfeng; ; ;Carotenoids are indispensable to plants and essential for human nutrition and health. Carotenoid contents are strongly influenced by light through light-responsive genes such as B-Box (BBX) genes. BBX proteins, a class of zinc-finger transcription factors, mediate many light-signaling pathways, leading to the biosynthesis of important metabolites in plants. However, the identification of the BBX gene family and expression analysis in response to photoperiod-mediated carotenoid accumulation in cucumber remains unexplored. We performed a genome-wide study and determined the expression of cucumber BBX genes (hereafter referred to as CsaBBXs genes) in the endocarp of Xishuangbanna cucumber fruit (a special type of cucumber accumulating a high level of β-carotene in the endocarp) using an RNA-seq analysis of plants previously subjected to two photoperiodic conditions. Here, 26 BBX family genes were identified in the cucumber genome and named serially CsaBBX1 through CsaBBX26. We characterized CsaBBX genes in terms of their phylogenetic relationships, exon-intron structures, cis-acting elements, and syntenic relationships with Arabidopsis thaliana (L.) Heynh. RNA-seq analysis revealed a varied expression of CsaBBX genes under photoperiod treatment. The analysis of CsaBBXs genes revealed a strong positive correlation between CsaBBX17 and carotenoid biosynthetic pathway genes (phytoene synthase, ζ-carotene desaturase, lycopene ε-cyclase, β-carotene hydroxylase-1), thus suggesting its involvement in β-carotene biosynthesis. Additionally, nine CsaBBX genes (CsaBBX 4, 5, 7, 9, 11, 13, 15, 17 and 22) showed a significant positive correlation with β-carotene content. The selected CsaBBX genes were verified by qRT-PCR and confirmed the validity of RNA-seq data. The results of this study established the genome-wide analysis of the cucumber BBX family and provide a framework for understanding their biological role in carotenoid accumulation and photoperiodic responses. Further investigations of CsaBBX genes are vital since they are promising candidate genes for the functional analysis of carotenoid biosynthesis and can provide genetic tools for the molecular breeding of carotenoids in plants.Item Genome-Wide Identification, Phylogenetic and Expression Pattern Analysis of GATA Family Genes in Cucumber (Cucumis sativus L.)(MDPI, 2021) Zhang, Kaijing; Jia, Li; Yang, Dekun; Hu, Yuchao; Njogu, Martin Kagiki; Wang, Panqiao; Lu, Xiaomin; Yan, Congsheng; ; ;GATA transcription factors are a class of transcriptional regulatory proteins that contain a characteristic type-IV zinc finger DNA-binding domain, which play important roles in plant growth and development. The GATA gene family has been characterized in various plant species. However, GATA family genes have not been identified in cucumber. In this study, 26 GATA family genes were identified in cucumber genome, whose physicochemical characteristics, chromosomal distributions, phylogenetic tree, gene structures conserved motifs, cis-regulatory elements in promoters, homologous gene pairs, downstream target genes were analyzed. Tissue expression profiles of cucumber GATA family genes exhibited that 17 GATA genes showed constitutive expression, and some GATA genes showed tissue-specific expression patterns. RNA-seq analysis of green and virescent leaves revealed that seven GATA genes might be involved in the chloroplast development and chlorophyll biosynthesis. Importantly, expression patterns analysis of GATA genes in response to abiotic and biotic stresses indicated that some GATA genes respond to either abiotic stress or biotic stress, some GATA genes such as Csa2G162660, Csa3G017200, Csa3G165640, Csa4G646060, Csa5G622830 and Csa6G312540 were simultaneously functional in resistance to abiotic and biotic stresses. Overall, this study will provide useful information for further analysis of the biological functions of GATA factors in cucumberItem Transcriptomic and Physiological Analyses Reveal Potential Genes Involved in Photoperiod-Regulated β-Carotene Accumulation Mechanisms in the Endocarp of Cucumber (Cucumis sativus L.) Fruit(MDPI, 2022-10-21) Obel, Hesbon Ochieng; Cheng, Chunyan; Tian, Zhen; Njogu, Martin Kagiki; Li, Ji; Du, Shengli; Lou, Qunfeng; Zhou, Junguo; Yu, Xiaqing; Ogweno, Joshua Otieno; Chen, JinfengThe accumulation of carotenoids in plants is a key nutritional quality in many horticultural crops. Although the structural genes encoding the biosynthetic enzymes are well-characterized, little is known regarding photoperiod-mediated carotenoid accumulation in the fruits of some horticultural crops. Herein, we performed physiological and transcriptomic analyses using two cucumber genotypes, SWCC8 (XIS-orange-fleshed and photoperiod-sensitive) and CC3 (white-fleshed and photoperiod-non-sensitive), established under two photoperiod conditions (8L/16D vs. 12L/12D) at four fruit developmental stages. Day-neutral treatments significantly increased fruit β-carotene content by 42.1% compared to short day (SD) treatments in SWCC8 at 40 DAP with no significant changes in CC3. Day-neutral condition elevated sugar levels of fruits compared to short-day treatments. According to GO and KEGG analyses, the predominantly expressed genes were related to photosynthesis, carotenoid biosynthesis, plant hormone signaling, circadian rhythms, and carbohydrates. Consistent with β-carotene accumulation in SWCC8, the day-neutral condition elevated the expression of key carotenoid biosynthesis genes such as PSY1, PDS, ZDS1, LYCB, and CHYB1 during later stages between 30 to 40 days of fruit development. Compared to SWCC8, CC3 showed an expression of DEGs related to carotenoid cleavage and oxidative stresses, signifying reduced β-carotene levels in CC3 cucumber. Further, a WGCNA analysis revealed co-expression between carbohydrate-related genes (pentose-phosphatase synthase, β-glucosidase, and trehalose-6-phosphatase), photoperiod-signaling genes (LHY, APRR7/5, FKF1, PIF3, COP1, GIGANTEA, and CK2) and carotenoid-biosynthetic genes, thus suggesting that a cross-talk mechanism between carbohydrates and light-related genes induces β-carotene accumulation. The results highlighted herein provide a framework for future gene functional analyses and molecular breeding towards enhanced carotenoid accumulation in edible plant organs.