Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Musundi, Sammy 1"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Unconditional Banach Space Ideal Property’’
    (Scientific Advances Publishers, 2012) Musundi, Sammy 1; Shem, Aywa 2; Fourie, Jan 3; Matuya, John Wanyonyi 4
    Abstract Let Lw ′ denote the assignment which associates with each pair of Banach spaces X , Y , the vector space Lw ′ ( X , Y ) and K ( X , Y ) be the space of all compact linear operators from X to Y. Let T ∈ Lw ′ ( X , Y ) and suppose (Tn ) ⊂ K ( X , Y ) converges in the dual weak operator topology (w′) of T. Denote by K u ((Tn )) the finite number given by K u ((Tn )) := sup { max { Tn , T − 2Tn }} . n∈N ′ The u-norm on Lw ( X , Y ) is then given by T u := inf { K u ((Tn )) : T = w′ − lim Tn , n Tn ∈ K ( X , Y )}. ′ It has been shown that ( Lw ( X , Y ) . u ) is a Banach operator ideal. We find ′ conditions for K ( X , Y ) to be an unconditional ideal in ( Lw ( X , Y ) . u ) .

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback