Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Mburu, Moses"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Predictive Modelling of Benign and Malignant Tumors Using Binary Logistic, Support Vector Machine and Extreme Gradient Boosting Models
    (Science and Education Publishing, 2019-11-26) Gachoki, Peter; Mburu, Moses; Muraya, Moses
    Breast cancer is the leading type of cancer among women worldwide, with about 2 million new cases and 627,000 deaths every year. The breast tumors can be malignant or benign. Medical screening can be used to detect the type of a diagnosed tumor. Alternatively, predictive modelling can also be used to predict whether a tumor is malignant or benign. However, the accuracy of the prediction algorithms is important since any incidence of false negatives may have dire consequence since a person cannot be put under medication, which can lead to death. Moreover, cases of false positives may subject an individual to unnecessary stress and medication. Therefore, this study sought to develop and validate a new predictive model based on binary logistic, support vector machine and extreme gradient boosting models in order to improve the prediction accuracy of the cancer tumors. This study used the Breast Cancer Wilcosin data set available on Kaggle. The dependent variable was whether a tumor is malignant or benign. The regressors were the tumor features such as radius, texture, area, perimeter, smoothness, compactness, concavity, concave points, symmetry and fractional dimension of the tumor. Data analysis was done using the Rstatistical software and it involved, generation of descriptive statistics, data reduction, feature selection and model fitting. Before model fitting was done, the reduced data was split into the train set and the validation set. The results showed that the binary logistic, support vector machine and extreme gradient boosting models had predictive accuracies of 96.97%, 98.01% and 97.73%. This showed an improvement compared to already existing models. The results of this study showed that support vector machine and extreme gradient boosting have better prediction power for cancer tumors compared to binary logistic. This study recommends the use of support vector machine and extreme gradient boosting in cancer tumor prediction and also recommends further investigations for other algorithms that can improve prediction

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback