Browsing by Author "Li, Ying"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Fine Mapping and Transcriptome Analysis of Virescent Leaf Gene v-2 in Cucumber (Cucumis sativus L.)(Frontiers in Plant Science, 2020) Zhang, Kaijing; Li, Ying; Zhu, Wenwei; Wei, Yifan; Njogu, Martin Kagiki; Lou, Qunfeng; Li, Ji; Chen, Jinfeng; ; ;Leaf color mutants are the ideal materials to explore the pathways of chlorophyll metabolism, chloroplast development and photosynthesis system. In this study, a new virescent leaf mutant 104Y was identified by spontaneous mutation, whose cotyledon and upper five true leaves were yellow color. The yellow true leaves gradually turned green from top to bottom with increased chlorophyll contents. Genetic analysis indicated that the virescent leaf was controlled by one single recessive gene v-2, which was accurately mapped into 36.0–39.7 Mb interval on chromosome 3 by using BSA-seq and linkage analysis. Fine mapping analysis further narrowed v-2 into 73-kb genomic region including eight genes with BC1 and F2 populations. Through BSA-seq and cDNA sequencing analysis, only one nonsynonymous mutation existed in the Csa3G890020 gene encoding auxin F-box protein was identified, which was predicted as the candidate gene controlling virescent leaf. Comparative transcriptome analysis and quantitative real-time PCR analysis revealed that the expression level of Csa3G890020 was not changed between EC1 and 104Y. However, RNA-seq analysis identified that the key genes involved in chlorophyll biosynthesis and auxin signaling transduction network were mainly down-regulated in 104Y compared with EC1, which indicated that the regulatory functions of Csa3G890020 could be performed at post-transcriptional level rather than transcriptional level. This is the first report to map-based clone an auxin F-box protein gene related to virescent leaf in cucumber. The results will exhibit a new insight into the chlorophyll biosynthesis regulated by auxin signaling transduction network.Item Genome-Wide Identification of the B-Box Gene Family and Expression Analysis Suggests Their Potential Role in Photoperiod-Mediated β-Carotene Accumulation in the Endocarp of Cucumber (Cucumis sativus L.) Fruit(MDPI, 2022) Obel, Hesbon Ochieng; Cheng, Chunyan; Li, Ying; Tian, Zhen; Njogu, Martin Kagiki; Li, Ji; Lou, Qunfeng; Yu, Xiaqing; Yang, Zhengan; Ogweno, Joshua Otieno; Chen, Jinfeng; ; ;Carotenoids are indispensable to plants and essential for human nutrition and health. Carotenoid contents are strongly influenced by light through light-responsive genes such as B-Box (BBX) genes. BBX proteins, a class of zinc-finger transcription factors, mediate many light-signaling pathways, leading to the biosynthesis of important metabolites in plants. However, the identification of the BBX gene family and expression analysis in response to photoperiod-mediated carotenoid accumulation in cucumber remains unexplored. We performed a genome-wide study and determined the expression of cucumber BBX genes (hereafter referred to as CsaBBXs genes) in the endocarp of Xishuangbanna cucumber fruit (a special type of cucumber accumulating a high level of β-carotene in the endocarp) using an RNA-seq analysis of plants previously subjected to two photoperiodic conditions. Here, 26 BBX family genes were identified in the cucumber genome and named serially CsaBBX1 through CsaBBX26. We characterized CsaBBX genes in terms of their phylogenetic relationships, exon-intron structures, cis-acting elements, and syntenic relationships with Arabidopsis thaliana (L.) Heynh. RNA-seq analysis revealed a varied expression of CsaBBX genes under photoperiod treatment. The analysis of CsaBBXs genes revealed a strong positive correlation between CsaBBX17 and carotenoid biosynthetic pathway genes (phytoene synthase, ζ-carotene desaturase, lycopene ε-cyclase, β-carotene hydroxylase-1), thus suggesting its involvement in β-carotene biosynthesis. Additionally, nine CsaBBX genes (CsaBBX 4, 5, 7, 9, 11, 13, 15, 17 and 22) showed a significant positive correlation with β-carotene content. The selected CsaBBX genes were verified by qRT-PCR and confirmed the validity of RNA-seq data. The results of this study established the genome-wide analysis of the cucumber BBX family and provide a framework for understanding their biological role in carotenoid accumulation and photoperiodic responses. Further investigations of CsaBBX genes are vital since they are promising candidate genes for the functional analysis of carotenoid biosynthesis and can provide genetic tools for the molecular breeding of carotenoids in plants.