CHUKA

UNIVERSITY EXAMINATIONS

ODEL

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF COMMERCE

BCOM 162: BUSINESS MATHEMATICS II

STREAMS: BCOM Y1S2
TIME: 2 HOURS
DAY/DATE: TUESDAY 23/03/2021
8.30 P.M - 10.30 A.M

INSTRUCTIONS:

Answer question one and any other two questions

Do not write on the question paper

QUESTION ONE (30 MARKS)

(a) Define the following terms as used in probability theory;
(i) Sample space
[2 marks]
(ii) Random experiment
[2 marks]
(iii) Mutually exclusive events
[2 marks]
(b) Explain any two areas of application of calculus.
(c) An aircraft emerging locator transmitter (ELT) is a device designed to transmit signal incase of crash. Altigauge ltd makes 80% of ELTs, Bryant ltd makes 15\% of ELTs while the rest are supplied by Chartair ltd. ELTs made by Altigauge, Bryant and Chartair have $4 \%, 6 \%$ and 9% defects respectively

Required :

(i) A probability tree diagram illustrating the above scenario. [3 marks]
(ii) The probability that a randomly picked ELT device will be defective [3 marks]
(iii) Probability a randomly picked ELT device from either Bryant or Chartair companies is defective. marks]
(iv) Probability that a randomly picked ELT device was from Bryant given that it was defective.
(d) Ngano bakery produces two types of cakes namely queen cake and black forest. The cost of producing 10 queen cakes and 8 black forest is ksh 4060 . The cost of producing 4 queen cakes and 7 black forests is ksh 2840 . Using matrix algebra determine the cost of producing a queen cake and a black forest. marks]
(e) Distinguish between open and closed Leontief models illustrating where possible. marks]

QUESTION TWO

(a) Shujaa ltd deals with a manufacture of a product named "Zed". The product is produced on order and the company does not keep inventory of the product. The demands function (in thousand shillings) is given by $\mathrm{P}=190-\mathrm{q}$ while the total cost function (in thousand shillings) is given by $\mathrm{TC}=q^{2}+10 \mathrm{q}+500$ where q is the quantity produced and sold.

Required:

(i) The total revenue function for the company.
[2 marks]
(ii) The number of units produced so as to maximize profit. [6 marks]
(iii) Price per unit at the maximum profit.
(b) Solve by Crammers role the following system of linear simultaneous equations .

$$
\begin{aligned}
& 2 x+y-4 z=5 \\
& -2 x+3 y+z=15 \\
& 4 x-2 y+3 z=15
\end{aligned}
$$

[6 marks]
(c) Distinguish between independent and mutually exclusive events as used in probability theory.
[4 marks]

QUESTION THREE

(a) The marginal cost in 'ksh 000 ' incurred in feeding x hundred visitors in a graduation ceremony is given by $\frac{d T c}{d x}=2 x-50$ and TC $=300$ when $\mathrm{x}=30$

Required :

(i) The fixed production cost of feeding the visitors.
(ii) The value of x that would minimize the total cost of feeding the visitors. [3 marks]
(b) An economy is based on agriculture, manufacturing and transportation. Each unit of agriculture output requires 0.2 units of its own, 0.2 units of manufacturing and 0.1 units of transportation. A unit of manufacturing output requires 0.2 units of agriculture, 0.4
units of its own and 0.2 units of transportation. A unit of transportation requires 0.1 units of agriculture, 0.1 units of manufacturing and 0.3 units of its own.

Required :

(i) Derive the technology matrix based on the above information. [3 marks]
(ii) What production schedule should the economy have to satisfy the consumer demand of 80,60 and 50 units of agriculture, manufacturing and transportation respectively.
[10 marks]

QUESTION FOUR

(a) Discuss 3 types of decision making environment in a business.
(b) Given that $\mathrm{A}=\left[\begin{array}{cc}3 & -1 \\ 1 & 2\end{array}\right]$ find A^{-1} and hence or otherwise find the value of x and y in

$$
3 x-y=9
$$

$x+2 y=-4$
(c) An investor has an opportunity of investing in one of the 3 available opportunities A, B and C under 3 demand states; low, medium and high. The following is the payoff table in million shillings for each of the alternatives.

	A	B	C
Demand : Low	4500	-6000	-8000
Medium	5000	2000	-4000
High	10000	4000	1000

Advise the investor o the best alternative under the following criteria clearly giving a reason for your advice.
(i) Maximax criterion
[2 marks]
(ii) Hurwicz criterion $(\alpha=0.8)$
[3 marks]
(iii) Savage principle
[3 marks]
(iv) Suppose the states of nature are expected to occur with probabilities $0.3,0.5$ and 0.2 for low, medium and high respectively what would have been investment opportunity A's payoff.
[2 marks]

