CHUKA

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF
SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

CHEM 120: PHYSICAL CHEMISTRY I

STREAMS: BSC (CHEM, MATHS, BIOL, BIOCHEM, INDUSTRIAL. CHEM, BIOMED)
 TIME: 2 HOURS

DAY/DATE: FRIDAY 18/12/2020
8.30 A.M. - 10.30 A.M.

INSTRUCTIONS: Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a) (i) State the Avogadro's law (1 mark)
(ii) State what can you deduce from the fact that at STP $22.4 \mathrm{dm}^{3}$ of carbon dioxide contain more than 6.02×10^{23} molecules
(iii) On reacting potassium chromate (VII) (potassium chlorate), KClO_{4}, with fluorosulphonic acid $\mathrm{FSO}_{3} \mathrm{H}$ a gas X is evolved. A 0.245 g of X are found to occupy $112 \mathrm{~cm}^{3}$ at 293 k and at pressure of $5.20 \times 10^{4} \mathrm{~Pa}$. Calculate the relative molecular mass of $X .\left\{(\mathrm{K}=39.098, \mathrm{Cl}=34.45, \mathrm{O}=15.999 \mathrm{~g} / \mathrm{mol}) \mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right\}$
(iv) Describe how the syringe method can be used to determine the relative molecular mass of a gas and vapour (volatile liquids)
(b) (i) Write short notes on the order of reaction and rate constants

CHEM 120

(ii) The progress of the reaction below can be followed by using the fact that compound A reacts with acidified potassium iodide, liberating iodine whereas compound B does not.

A series of experiments was carried out to determine the initial rate of reaction for various concentrations of compound A . The following data were obtained.

Concentration of compound $\mathrm{A}\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Initial rate $\left(\mathrm{mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
0.060	3.12×10^{-4}
0.120	6.23×10^{-4}
0.180	9.38×10^{-4}
0.240	12.5×10^{-4}

From the data in the table, deduce the order of reaction with respect to compound A . Explain your reasoning
(1 mark)
(iii) In an investigation of the recombination of X atoms to give X_{2} molecules in the gas phase in the presence of argon, that is the reaction $X+X+A r \rightarrow X_{2}+A r$ the following data were obtained.

With the concentration of argon fixed at $1.0 \times 10^{-3} \mathrm{~mol} \mathrm{dm}^{-3}$

Concentration $[\mathrm{X}]\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Initial rate $\frac{d\left[X_{2}\right]}{d t}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
1.0×10^{-5}	8.70×10^{-4}
2.0×10^{-5}	3.48×10^{-3}
4.0×10^{-5}	1.39×10^{-2}

With the concentration of X fixed at $1.0 \times 10^{-5} \mathrm{~mol} \mathrm{dm}^{-3}$

Initial concentration $[\mathrm{Ar}]\left(\mathrm{mol} \mathrm{dm}^{-3}\right)$	Initial rate $\frac{d\left[X_{2}\right]}{d t}\left(\mathrm{~mol} \mathrm{dm}^{-3} \mathrm{~s}^{-1}\right)$
1.0×10^{-3}	8.70×10^{-4}
5.0×10^{-3}	4.35×10^{-3}
1.0×10^{-2}	8.69×10^{-3}

Find the order of reaction with respect to [X] and [Ar], hence determine the overall velocity constant for the formation of X_{2} molecules

CHEM 120

(c) Draw the various types of curves showing variation of the rate with temperature
(5 marks)
(d) At certain temperature, equilibrium constant for the reaction $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{CO}_{2}+\mathrm{H}_{2}$ is 5.0. If the reaction started with initial partial pressures of CO and steam as 1 atmosphere and 10 atmospheres, calculate the partial pressure of all the gases when the equilibrium state is reached.
(e) A 2.5 M solution of a weak monobasic acid has the same pH as 0.017 M HCl . Assuming that the HCl is completely ionized;
(i) calculate the pH of these solutions
(ii) determine the degree of ionization of the weak acid in its 2.5 M solution (2 marks)

QUESTION TWO (20 MARKS)

a) The rate constant for the reaction $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$ is $5.4 \times 10^{-4} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ at $326^{\circ} \mathrm{C}$. At $410^{\circ} \mathrm{C}$ the rate constant was found to be $2.8 \times 10^{-2} \mathrm{~m}^{-1} \mathrm{~s}^{-1}$ calculate the
(i) Activation energy $\left(\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
(ii) High temperature limiting rate constant for this reaction.
b) Briefly explain why the study of the effect of temperature on rates is important (3 marks)
c) The table below gives values for the velocity constant k , of the reaction between potassium hydroxide and bromoethane in ethanol at a series of temperature, T

$\mathrm{K}\left(\mathrm{dm}^{3} \mathrm{~mol}^{-1} \mathrm{~s}^{-1}\right)$	$\mathrm{T}(\mathrm{k})$
0.182	305.0
0.466	313.0
1.35	323.1
3.31	332.7
10.2	343.6
22.6	353.0

Calculate the value for the activation energy of the reaction $\left(\mathrm{R}=8.31 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$

CHEM 120

d) The following data are for the reaction
$\mathrm{A}+\mathrm{B} \rightleftharpoons$ Products

$[\mathbf{A}]$	$[B]$	Initial rate $\left(\mathrm{mol}\right.$ litre $\left.^{\mathbf{- 1}} \mathbf{s e c}^{\mathbf{1}}\right)$
0.1	0.1	4.0×10^{-4}
0.2	0.2	1.6×10^{-3}
0.5	0.1	1.0×10^{-2}
0.5	0.5	1.0×10^{-2}

(i) Determine the order with respect to A and B
(ii) Calculate the rate constant
(iii) Determine the reaction rate when the concentrations of A and B are 0.2 M and 0.35 M respectively.

QUESTION THREE (20 MARKS)

a) This question concerns the following reversible process

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g}) \Delta \mathrm{H}^{\mathrm{o}}=-98 \mathrm{KJ} \mathrm{~mol}^{-1}
$$

Explain the effect on the position of equilibrium on;
(i) Increasing the pressure at constant temperature
(ii) Increasing the temperature at constant pressure
(iii) Bearing in mind your answer for part (i), how do your account for the fact that industrially a temperature of about 800 K , a pressure of 1 or 2 atm and a catalyst are used.
(iv) At 800 K , the equilibrium partial pressures in atmospheres are; $\mathrm{P}_{\mathrm{SO} 2}=0.1, \mathrm{P}_{\mathrm{O} 2}=0.7$ and $\mathrm{P}_{\mathrm{SO} 2}=0.8$. Calculate K_{P}
b) \quad Consider the reaction $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$. For such a system of total volume, dm^{3} and a total pressure of 202.6 kPa , at equilibrium the percentage dissociation of PCl_{5} (g) at temperatures of $200^{\circ} \mathrm{C}$ and $300^{\circ} \mathrm{C}$ are 48.5 and 97.0 respectively.
(i) Calculate the value for Kp at $200^{\circ} \mathrm{C}$

CHEM 120

(ii) Calculate the percentage dissociation of PCl_{5} that would result if the pressure of the system was reduced to 135.1 kPa . \{Temperature remains constant \}
(iii) How is the value obtained in (ii) explained in terms of Le chatelier's principle?
(1 mark)
c) State the law of Gay-Lussac and show how it is related to Avogadro's principle (3 marks)
d) The reaction, $2 \mathrm{~N}_{2} \mathrm{O}_{5} \rightarrow 4 \mathrm{NO}_{2}+\mathrm{O}_{2}$, is forming NO_{2} at the rate of $0.0076 \mathrm{~mol} / \mathrm{L} / \mathrm{sec}$ at some time. Calculate;
(i) The rate of appearance of O_{2} at this time
(ii) The rate of disappearance of $\mathrm{N}_{2} \mathrm{O}_{5}$ at this time

QUESTION FOUR (20 MARKS)

a) Distinguish between electrolytic cell and electrochemical cell with aid of suitable diagrams
b) Will $\mathrm{Ce}^{3+}(\mathrm{a}=1)$ ions reduce chlorine to $\mathrm{Cl}^{-}(\mathrm{a}=1)$ ions at 298 K according to the reaction

$$
\mathrm{Ce}^{3+}(\mathrm{a}=1)+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{p}=1 \mathrm{~atm}) \rightleftharpoons \mathrm{Ce}^{4+}(\mathrm{a}=1)+\mathrm{Cl}^{-}(\mathrm{a}=1)
$$

Given that

$$
\begin{aligned}
& \mathrm{E}_{\mathrm{ce}^{4+}}^{\mathrm{o}} / \mathrm{Ce}^{3+} / \mathrm{Pt}=1.82 \mathrm{~V} \\
& \mathrm{E}_{\mathrm{Cl}^{-} / \mathrm{Cl}_{2} / \mathrm{Pt}}^{\mathrm{o}}=1.3595 \mathrm{~V}
\end{aligned}
$$

c) Using the thermochemical data given below at 298 K ,

$$
\begin{array}{ll}
2 \mathrm{OF}_{2}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+2 \mathrm{~F}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=-49.4 \mathrm{KJ} \\
2 \mathrm{ClF}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Cl}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{OF}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=+205.6 \mathrm{KJ} \\
\mathrm{ClF}_{3}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \frac{1}{2} \mathrm{Cl}_{2} \mathrm{O}(\mathrm{~g})+\frac{3}{2} \mathrm{OF}_{2}(\mathrm{~g}) & \Delta \mathrm{H}^{\mathrm{o}}=+266.7 \mathrm{KJ}
\end{array}
$$

Calculate the change in enthalpy ($\Delta \mathrm{H}^{\circ}$) for the following reaction

$$
\begin{equation*}
\mathrm{ClF}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow \mathrm{ClF}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}^{\mathrm{o}}=? \tag{3marks}
\end{equation*}
$$

d) The first proton of sulphuric acid is completely ionized but the second proton is only partially dissociated with an acidity constant Ka_{2} of 1.2×10^{-2}. Calculate the pH of the solution.
e) The hydrogen sulphate ion, HSO_{4}^{-}, is a moderately strong Bronsted acid with a Ka of 1.0×10^{-2}
i. Write the equilibrium expression for this acid (1 mark)
ii. Calculate the value of $\left\{\mathrm{H}^{+}\right\}$in $0.010 \mathrm{M} \mathrm{HSO}_{4}^{-}$(Furnished by the salt, NaHSO_{4}). (3 marks)
iii. Calculate the percentage ionization of HSO_{4}^{-}into H^{+}and $\mathrm{SO}_{4}{ }^{2-}$ in $0.010 \mathrm{M} \mathrm{HSO}_{4}^{-}$

