CHUKA



UNIVERSITY

# UNIVERSITY EXAMINATIONS

## FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE AND BACHELOR OF EDUCATION (SCIENCE)

## **CHEM 120: PHYSICAL CHEMISTRY I**

# STREAMS: BSC (CHEM, MATHS, BIOL, BIOCHEM, INDUSTRIAL. CHEM, BIOMED) TIME: 2 HOURS

| DAY/DATE: FRIDAY 18/12/2020 | 8.30 A.M. – 10.30 A.M. |
|-----------------------------|------------------------|
| INCEDUCEIONS: A             |                        |

**INSTRUCTIONS:** Answer question ONE and any other TWO questions

#### **QUESTION ONE (30 MARKS)**

| (a) | (i)  | State the Avogadro's law                                                              | (1 mark)  |
|-----|------|---------------------------------------------------------------------------------------|-----------|
|     | (ii) | State what can you deduce from the fact that at STP 22.4 dm <sup>3</sup> of carbon di | oxide     |
|     |      | contain more than $6.02 \times 10^{23}$ molecules                                     | (2 marks) |

- (iii) On reacting potassium chromate (VII) (potassium chlorate), KClO<sub>4</sub>, with fluorosulphonic acid FSO<sub>3</sub>H a gas X is evolved. A 0.245 g of X are found to occupy  $112cm^3$  at 293 k and at pressure of 5.20 x 10<sup>4</sup> Pa. Calculate the relative molecular mass of X. {(K = 39.098, Cl = 34.45, O = 15.999 g/mol) R =8.314 JK<sup>-1</sup>mol<sup>-1</sup>} (2 marks)
- (iv) Describe how the syringe method can be used to determine the relative molecular mass of a gas and vapour (volatile liquids) (5 marks)

(b) (i) Write short notes on the order of reaction and rate constants (3 marks)

 (ii) The progress of the reaction below can be followed by using the fact that compound A reacts with acidified potassium iodide, liberating iodine whereas compound B does not.



A series of experiments was carried out to determine the initial rate of reaction for various concentrations of compound A. The following data were obtained.

| Concentration of compound A (mol dm <sup>-3</sup> ) | Initial rate (mol $dm^{-3}s^{-1}$ ) |
|-----------------------------------------------------|-------------------------------------|
| 0.060                                               | $3.12 \times 10^{-4}$               |
| 0.120                                               | $6.23 	imes 10^{-4}$                |
| 0.180                                               | $9.38 	imes 10^{-4}$                |
| 0.240                                               | $12.5 	imes 10^{-4}$                |

From the data in the table, deduce the order of reaction with respect to compound A. Explain your reasoning (1 mark)

(iii) In an investigation of the recombination of X atoms to give  $X_2$  molecules in the gas phase in the presence of argon, that is the reaction  $X + X + Ar \rightarrow X_2 + Ar$  the following data were obtained.

| With the concentration of argon fixed at | t $1.0 \times 10^{-3}$ mol dm <sup>-3</sup> |
|------------------------------------------|---------------------------------------------|
|------------------------------------------|---------------------------------------------|

| Concentration [X] (mol dm <sup>-3</sup> ) | Initial rate $\frac{d[X_2]}{dt}$ (mol dm <sup>-3</sup> s <sup>-1</sup> ) |
|-------------------------------------------|--------------------------------------------------------------------------|
| 1.0×10 <sup>-5</sup>                      | $8.70 \times 10^{-4}$                                                    |
| 2.0×10 <sup>-5</sup>                      | $3.48 \times 10^{-3}$                                                    |
| 4.0×10 <sup>-5</sup>                      | $1.39 \times 10^{-2}$                                                    |

With the concentration of X fixed at  $1.0 \times 10^{-5}$  mol dm<sup>-3</sup>

| Initial concentration [Ar] (mol dm <sup>-3</sup> ) | Initial rate $\frac{d[X_2]}{dt}$ (mol dm <sup>-3</sup> s <sup>-1</sup> ) |
|----------------------------------------------------|--------------------------------------------------------------------------|
| $1.0 \times 10^{-3}$                               | $8.70 \times 10^{-4}$                                                    |
| 5.0×10 <sup>-3</sup>                               | $4.35 \times 10^{-3}$                                                    |
| 1.0×10 <sup>-2</sup>                               | $8.69 \times 10^{-3}$                                                    |

Find the order of reaction with respect to [X] and [Ar], hence determine the overall velocity constant for the formation of  $X_2$  molecules (3 marks)

(c) Draw the various types of curves showing variation of the rate with temperature

(5 marks)

- (d) At certain temperature, equilibrium constant for the reaction  $CO + H_2O \rightleftharpoons CO_2 + H_2$  is 5.0. If the reaction started with initial partial pressures of CO and steam as 1 atmosphere and 10 atmospheres, calculate the partial pressure of all the gases when the equilibrium state is reached. (5 marks)
- (e) A 2.5 M solution of a weak monobasic acid has the same pH as 0.017M HCl. Assuming that the HCl is completely ionized;
  - (i) calculate the pH of these solutions (1 mark)
  - (ii) determine the degree of ionization of the weak acid in its 2.5M solution (2 marks)

# **QUESTION TWO (20 MARKS)**

- a) The rate constant for the reaction H<sub>2</sub> (g) + I<sub>2</sub> (g)  $\rightarrow$  2HI (g) is 5.4 ×10<sup>-4</sup> m<sup>-1</sup>s<sup>-1</sup> at 326°C. At 410°C the rate constant was found to be 2.8 ×10<sup>-2</sup> m<sup>-1</sup>s<sup>-1</sup> calculate the
  - (i) Activation energy ( $R = 8.314 \text{ JK}^{-1}\text{mol}^{-1}$ ) (3 marks)
  - (ii) High temperature limiting rate constant for this reaction. (2 marks)
- b) Briefly explain why the study of the effect of temperature on rates is important (3 marks)
- c) The table below gives values for the velocity constant k, of the reaction between potassium hydroxide and bromoethane in ethanol at a series of temperature, T

| $K (dm^3 mol^{-1}s^{-1})$ | T (k) |
|---------------------------|-------|
| 0.182                     | 305.0 |
| 0.466                     | 313.0 |
| 1.35                      | 323.1 |
| 3.31                      | 332.7 |
| 10.2                      | 343.6 |
| 22.6                      | 353.0 |

Calculate the value for the activation energy of the reaction ( $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$ )

(5 marks)

- d) The following data are for the reaction
  - $A + B \rightleftharpoons Products$

| [A] | [ <b>B</b> ] | Initial rate (mol litre <sup>-1</sup> sec <sup>-1</sup> ) |
|-----|--------------|-----------------------------------------------------------|
| 0.1 | 0.1          | $4.0 \times 10^{-4}$                                      |
| 0.2 | 0.2          | $1.6 \times 10^{-3}$                                      |
| 0.5 | 0.1          | $1.0 \times 10^{-2}$                                      |
| 0.5 | 0.5          | $1.0 \times 10^{-2}$                                      |

(i) Determine the order with respect to A and B (4 marks)
(ii) Calculate the rate constant (2 marks)
(iii) Determine the reaction rate when the concentrations of A and B are 0.2M and 0.35M respectively. (1 mark)

### **QUESTION THREE (20 MARKS)**

a) This question concerns the following reversible process

 $2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g) \Delta H^\circ = -98 \text{ KJ mol}^{-1}$ 

Explain the effect on the position of equilibrium on;

- (i) Increasing the pressure at constant temperature (1 marks)
- (ii) Increasing the temperature at constant pressure  $(1^{1}/_{2} \text{ mark})$
- (iii) Bearing in mind your answer for part (i), how do your account for the fact that industrially a temperature of about 800K, a pressure of 1 or 2 atm and a catalyst are used.
   (2 marks)
- (iv) At 800K, the equilibrium partial pressures in atmospheres are;  $P_{SO2} = 0.1$ ,  $P_{O2} = 0.7$ and  $P_{SO2} = 0.8$ . Calculate  $K_P$  (1<sup>1</sup>/<sub>2</sub> mark)
- b) Consider the reaction PCl<sub>5</sub> (g) ≓ PCl<sub>3</sub> (g) + Cl<sub>2</sub> (g). For such a system of total volume, dm<sup>3</sup> and a total pressure of 202.6 kPa, at equilibrium the percentage dissociation of PCl<sub>5</sub>
   (g) at temperatures of 200°C and 300°C are 48.5 and 97.0 respectively.
  - (i) Calculate the value for Kp at 200°C (4 marks)

| (ii) | Calculate the percentage dissociation of PCl <sub>5</sub> that would result if the pre- | essure of the |
|------|-----------------------------------------------------------------------------------------|---------------|
|      | system was reduced to 135.1 kPa. {Temperature remains constant}                         | (2 marks)     |

(iii) How is the value obtained in (ii) explained in terms of Le chatelier's principle?

(1 mark)

- c) State the law of Gay-Lussac and show how it is related to Avogadro's principle (3 marks)
- d) The reaction,  $2N_2O_5 \rightarrow 4NO_2 + O_2$ , is forming NO<sub>2</sub> at the rate of 0.0076 mol/L/sec at some time. Calculate;
  - (i) The rate of appearance of  $O_2$  at this time (2 marks)
  - (ii) The rate of disappearance of  $N_2O_5$  at this time (2 marks)

#### **QUESTION FOUR (20 MARKS)**

- a) Distinguish between electrolytic cell and electrochemical cell with aid of suitable diagrams (4 marks)
- b) Will  $Ce^{3+}$  (a=1) ions reduce chlorine to  $Cl^-$  (a=1) ions at 298 K according to the reaction  $Ce^{3+}$  (a=1) +  $\frac{1}{2}$   $Cl_2$  (p = 1 atm)  $\rightleftharpoons$   $Ce^{4+}$  (a=1) +  $Cl^-$  (a=1) Given that  $E_{ce^{4+}}^{0}/Ce^{3+}/Pt = 1.82$  V
  - $E_{Cl}^{0} / Cl_2 / Pt = 1.3595 V$  (4 marks)
- c) Using the thermochemical data given below at 298 K,
  - $2OF_{2}(g) \rightarrow O_{2}(g) + 2F_{2}(g) \qquad \Delta H^{o} = -49.4 \text{ KJ}$   $2ClF(g) + O_{2}(g) \rightarrow Cl_{2}O(g) + OF_{2}(g) \qquad \Delta H^{o} = +205.6 \text{ KJ}$   $ClF_{3}(g) + O_{2}(g) \rightarrow \frac{1}{2}Cl_{2}O(g) + \frac{3}{2}OF_{2}(g) \qquad \Delta H^{o} = +266.7 \text{ KJ}$ Calculate the change in enthalpy ( $\Delta H^{o}$ ) for the following reaction  $ClF(g) + F_{2}(g) \rightarrow ClF_{3}(g) \qquad \Delta H^{o} = ? \qquad (3 \text{ marks})$
- d) The first proton of sulphuric acid is completely ionized but the second proton is only partially dissociated with an acidity constant  $Ka_2$  of  $1.2 \times 10^{-2}$ . Calculate the pH of the solution. (4 marks)

- e) The hydrogen sulphate ion,  $HSO_{4^-}$ , is a moderately strong Bronsted acid with a Ka of  $1.0 \times 10^{-2}$ 
  - i. Write the equilibrium expression for this acid (1 mark)
  - ii. Calculate the value of  $\{H^+\}$  in 0.010M HSO<sub>4</sub><sup>-</sup> (Furnished by the salt, NaHSO<sub>4</sub>).

(3 marks)

iii. Calculate the percentage ionization of  $HSO_4^-$  into  $H^+$  and  $SO_4^{2-}$  in 0.010M  $HSO_4^-$  (1 mark)

\_\_\_\_\_