

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN AGRICULTURAL EDUCATION AND EXTENSION

CHEM 102: GENERAL INORGANIC AND PHYSICAL CHEMISTRY

STREAMS: BSC

TIME: 2 HOURS

8.30 A.M. - 10.30 A.M.

(2 marks)

DAY/DATE: WEDNESDAY 16/12/2020

INSTRUCTIONS

• Answer question ONE and any other TWO questions.

QUESTION ONE (30 MARKS)

- a) Define the following terms
 - i. Isotopes
 - ii. Mass number
- b) Copper is made of two isotopes. Copper-63 is 69.17% abundant and it has a mass of 62.9296 amu.
 Copper-65 is 30.83% abundant and it has a mass of 64.9278 amu. Calculate the weighted average mass of the two isotopes.
 (2 marks)
- c) A sample of gas has an initial volume of 158 mL at a pressure of 735 mm Hg and a temperature of 34°C. If the gas is compressed to a volume of 108 mL and heated to a temperature of 85°C, calculate its final pressure in millimeters of mercury. (3 marks)
- d) Consider the following species; Na; Ni; F⁻
 - i. Write the ground state electronic configuration for each of the species (3 marks)
 - ii. Write the orbital diagram for Na and Ni (2 marks)
- e) State the four quantum numbers and describe their significance. (4 marks)

- f) Nitrogen dioxide (NO) is a component of urban smog that forms from gases in car exhaust.Determine the number of molecules present in 8.92 g of nitrogen dioxide. (3 marks)
- g) Anabolic steroids are sometimes used illegally by athletes to increase muscle strength. A forensic chemist analyzes some tablets suspected of being a popular steroid. He determines that the substance in the tablets contains only C, H, and O and has a molar mass of 300.42 g/mol. When a 1.200-g sample is studied by combustion analysis, 3.516 g of CO₂ and 1.007 g of H₂O are collected. Determine the empirical and molecular formulae of the substance in the tablets. (6 marks)
- h) Briefly discuss the covalent bonding. (2 marks)
 i) Calculate the pH of sodium hydroxide solution in which [OH⁻] = 3.5 x 10⁻³ M. (3 marks)

QUESTION TWO (20 MARKS)

- a) The reaction N₂O₄ (g) \rightleftharpoons 2NO₂ (g) is endothermic, with $\Delta H = +56.9$ KJ. Explain how the amount of NO₂ at equilibrium will be affected by; (4 marks)
 - (i) By adding N₂O₄
 - (ii) Lowering the pressure by increasing the volume of the container.
 - (iii) Raising the temperature
 - (iv) Adding a catalyst to the system
- b) For the reaction CO (g) + H_2O (g) \rightleftharpoons CO₂ (g) + H_2 (g), the equilibrium constant (Kc) at 800K is 4.24. Calculate the equilibrium concentrations of CO₂, H_2 , CO and H_2O at 800 K, if only CO and H_2O are present initially at concentrations of 0.10 M each. (5 marks)
- c) Identify the acid, base, conjugate acid and the conjugate base in the following reaction. (2 marks) HI (g) + NH₃ (g) \rightleftharpoons NH₄⁺(aq) + I⁻(aq)
- d) Given that $K_W = 1.0 \times 10^{-14}$, calculate at 25°C;
 - i. the $[H^+]$ and pH of a tap water sample in which $[OH^-] = 2.0 \times 10^{-7}$ (3 marks) ii. the $[H^+]$ and $[OH^-]$ of human blood at pH 7.40. (3 marks)
 - iii. the pOH of a solution in which $[H^+] = (5.0)[OH^-]$. (3 marks)

QUESTION THREE (20 MARKS)

a(i) Draw Lewis structures of the following molecules/ions (i) H_2S (ii) SO_3 (iii) CO_2 (iv) BF_3 (v)	NC)	3
--	----	---	---

(5 marks)

		(5 marks)
(ii)	Determine the molecular geometry of (i) CO_2 (ii) H_2S (iii) BF_3	(3 marks)
(iii)	Draw the resonance structures for NO_3^-	(1 mark)

b) State the postulates of Bohr's model of an atom. (3 marks)

c) Calculate the wavelength in nanometers of a transition in a hydrogen atom from n=5 to n=2 ($R_{\rm H}$ =

(2 marks)

1.097× 10⁻² nm⁻¹)

d)	 Explain briefly how the following properties of the elements vary across a pergroup in the periodic table i. Atomic radius ii. Ionization energy iii. Electronegativity 	iod and down a (6 marks)				
	QUESTION FOUR (20 MARKS)					
a)	Derive the ideal gas law, explaining each term as used in the equation.	(3 marks)				
b)	A student collected a sample of a gas in a 220 ml gas bulb until its pressure reached 575 torr at a temperature of 25.0°C. Its mass was found to be 0.299g. What is the molecular mass of the gas? $\{1atm=760 \text{ torr}, 1ml=10^{-3}L, R=0.0821 \text{ L atm mol}^{-1}\text{K}^{-1}\}$ (3 marks)					
c)	Explain how the real gases deviate from the ideal gasses in obeying the ideal gas	law. (4 marks)				
d)	(i) Differentiate between molarity and molality (2 mar	ks)				
	 (ii) Calculate the concentration of a solution formed by diluting 0.850 L of a 5.0 M to 1.80L. 	glucose solution (2 marks)				
	(iii) If 0.025 gram of Pb(NO₃)₂ is dissolved in 100 grams of H₂O, calculate the the resulting solution, in parts per million	concentration of (2 marks)				
e)	Calculate the pH of 0.10 M acetic acid (CH ₃ COOH which can be simplified to H the dissociation constant for acetic acid is, $Ka = 1.8 \times 10^{-5}$	IAc). Given that (4 marks)				

**A	c*						
ctinide s	anthanic	87 Fr [223]	55 Cesium 132.905	37 Rb Rubidium 85,468	Potassium 39.098	1,008 3 3 6,94 11 11 11 13 8,94 11 11 13 8,94 11 11 12,2990	エ -
eries	le series	88 Radum [226]	56 Ba Barium 137.327	38 Sr Strontium 87.62	20 Calcium 40.078	4 Beeylium 9.012 12 Magnesium 24.305	
B9 Actinium [227]	57 La Lanthanum 138.905	* * 89 - 102	* 57 - 70				
90 Thorium 232.038	58 Cerium 140.116	103 Lr Lawrencium [262]	71 Lutetium 174.967	39 Y Yttrium 88.906	21 Sc Scandium 44.956	Averag	
91 Pa Protactinium 231.036	59 Pr Prasecodymium 140.908	104 Rf Rutherfordium [267]	72 Hafnium 178.49	40 Zr Zirconium 91.224	22 Titanium 47.867	Atomic Nun Syr Nie Atomic N	
92 Uranium 238.029	60 Nd Neodymium 144.242	105 Db Dubnium [270]	73 Ta Tantalum 180.948	A1 Niobium 92.906	23 Vanadium 50.942	nbol	
93 Neptunium [237]	61 Pm Promethium [145]	106 Sg Seaborglum [269]	74 W Tungsten 183.84	42 Mo Molybdenum 95.95	24 Cr Chromium 51.996	- 6 - Carbon - 12.011	
94 Putonium [244]	Samarium 150.36	107 Bh Bohrium [270]	75 Re Rhenium 186.207	43 TC Technetium [97]	25 Mn Manganese 54.938		
95 Americium [243]	63 Europium 151.964	108 Hassium [270]	76 OS Osmium 190.23	44 Ruthenium 101.07	26 Fe Iron 55.845		
96 Curium [247]	64 Gadolinium 157.25	109 Mt Meitnerium [278]	78	45 Rhodium 102.906	27 Co Cobalt 58.933	non	
97 BK Berkelium [247]	65 Terbium 158.925	110 DS Darmstadtum [281]	79 Pt Platinum 195.084	46 Pd Palladium 106,42	28 Nickel 58.693	metal metal taloid	
Salifornium [251]	66 Dysprosium 162.500	111 Rg Roentgenum [281]	80 Au Bold 196.997	47 Ag Silver 107.868	29 Cu Copper 63.546		
99 Ensteinium [252]	67 Holmium 164,930	112 Copernicium [285]	81 Hg Mercury 200.592	48 Cadmium 112.414	30 Zn Zinc 65.38		
100 Fermium [257]	68 Erbium 167.259	113 Nhonium [286]	81 Thallium 204.38	49 In Indium 114.818	31 Ga Gallium 69.723	55 Boron 10.81 Auminum	
101 Mandelevium [258]	69 Tm Thulium 168.934	114 Ferovium [289]	82 Pb Lead 207.2	50 Sn Tn 118.710	32 Ge Germanium 72.630	Carbon 12.011 12.011 12.011	
102 Nobelium [259]	70 Yb Vtterbium 173.045	115 Mc Moscovium [289]	83 Bi Bismuth 208.980	51 Sb Antimony 121.760	33 AS Arsenic 74.922	7 Nitrogen 14,007 Phosphorus 30,974	
		116 LV Livermorium [293]	84 Polonium [209]	53 Tellurium 127.60	34 Seenium 78.97	Oxygen 15.999 32.06	
		117 TS Tennessine [293]	Astatine [210]	53	35 Br Bromine 79.904	9 Fluorine 18.398 17 Chlorine 35.45	
		118 Oganesson [294]	Radon [222]	54 Xenon 131.293	36 Krypton 83.798	10 4.003 10 Neon 20.180 20.180 33.948	He