CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS OF AGRICULTURAL ECONOMICS

AGEC 851: ECONOMETRICS METHODS

STREAMS: M (AGEC)

TIME: 3 HOURS

2.30 PM - 5.30 PM

DAY/DATE: MONDAY 03/12/2018 INSTRUCTIONS:

Answer Question One and any other Three

Question One

(a) Given the following regression model $y = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \varepsilon$

Required:

(i) Derive the residue sum of squares (RSS) and the resulting first order normal equations. [6

marks]

(ii) Represent the normal equations derived in (i) above in matrix format.

[4 marks]

- (b) Explain two assumption of generalized linear regression model (GLS) [4 marks]
- (c) Given the following vector of stochastic terms:

 $\left[\varepsilon_{1}\varepsilon_{2}\ldots\varepsilon_{n}\right]$

Prove that

(i)
$$E(\varepsilon)=0$$
 and that [10 marks]
(ii) $E(\varepsilon ' \varepsilon)=\sigma^2 I_n$

(d) (i)	Explain the meaning of an integrated series and four properties of	an integrated
	series.	[6
marks]		
(ii)	Discuss three properties of a white noise process in time series.	[10 marks]

Question Two

(a) You are given the following econometric model $\begin{array}{c}
Y \\
nx1 \\
nxk \\
kx1 \\
nx1
\end{array} + \begin{array}{c}
\varepsilon \\
nx1 \\
nx1
\end{array}$ (matrix representation)

(i) Derive the OLS estimator $\hat{\beta}$ [5]

marks]

(ii) Prove that
$$E(\hat{\beta}) = \beta$$
 [5]

~

marks]

(iii)	Prove the Gauss Markov Theorem (Minimum variance of	β	[10
marks]			

Question Three

- (a) Faced with a dummy dependent variable, explain the consequences of using OLS estimation method. [10 marks]
- (b) Given the following time series process $y_t = C + \varepsilon_t + \theta \varepsilon_{t-1}$ Where C and θ are constants and ε_t is a white noise process.
 - (i) What type of data generation process does it represent? [2 marks]
 - (ii) Find mean and variance of y_t [8

marks]

Question Four

(a) Briefly explain the major difference between OLS (Ordinary Least Square) and MLE (Maximum Likelihood Estimation) methods. [6 marks]
(b) State the four main dummy dependent variable models. [8 marks]

(c)	Discu	[6 marks]		
Questi	ion Fiv	/e		
(a)	State and explain advantages of panel data. [10 marks]			
(b)	Explain the following terms as used in econometrics:			
	(i) (ii) (iii) (iv) (v)	Heteroscedasticity Unit root Autocorrelation Stationarity Disturbance /error term	[2 marks] [2 marks] [2 marks] [2 marks] [2 marks]	