FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR BACHELORS OF APPLIED COMPUTER SCIENCE

ACSC 102: INTRODUCTION TO DIGITAL LOGIC

STREAMS: BSC. APPLIED COMPUTER SCIENCE Y1S1
TIME: 2 HOURS
DAY/DATE: TUESDAY 15/12/2020
11.30AM - 1.30PM

INSTRUCTIONS

1. Answer all questions in section A and any other two questions from section B.
2. No Reference Material is allowed in the exam Room.
3. All Mobile phones should be switched off in the exam room.

SECTION A (COMPULSORY)

QUESTION 1(COMPULSORY) [30 MARKS]

a) Outline FOUR differences between digital and analogue electronics
(4marks)
b) A certain student claimed that a NOT gate cannot take more than one input at a time. Is the statement true? Justify.
c) Below is a digital circuit. Use it to answer the questions below: -

i) Write output Q .
(2marks)
ii) Simplify output Q of the above circuit (show the simplification process)
(3marks)
iii) Draw a resultant circuit after the simplification.
(2marks)
d) Outline FIVE digital output devices of a computer
e) Perform the following decimal arithmetic using binary $136_{10}+345_{10}$
(4marks)
f) Draw a truth table of an XNOR with two inputs
(2marks)
g) Differentiate between serial and parallel port, naming a device that can be connected to each port.
(5marks)

SECTION B (Answer two question from this section)

QUESTION 2 [20 MARKS]
a) Use truth table to prove the following Boolean algebra.
i) $\quad \mathrm{A}+{ }^{-} \mathrm{AB}=\mathrm{A}+\mathrm{B}$
(4 marks)
ii) $\quad \mathrm{A}+\mathrm{AB}=\mathrm{A}$
(4marks)
b) There are various adapter cards that can be connected onto a computer. Outline FIVE such cards and their functions.
(10marks)
c) Explain Two characteristics of RAM
(2marks)
QUESTION 3 [20 MARKS]
a) With reference to decoders
i) Using an example of a digital device, explain the function of a decoder
ii) Draw a circuit diagram of a 2 to 4 decoder
iii) Draw a truth table of the above decoder
b) Convert binary 1110001_{2} into Decimal
c) Use Karnaugh map to minimize the equation below

$$
\mathrm{Z}=\mathrm{f}(\mathrm{~A}, \mathrm{~B}, \mathrm{C})=\overline{\mathrm{A}} \mathrm{~B}+\mathrm{B} \overline{\mathrm{C}}+\mathrm{BC}+\mathrm{A} \overline{\mathrm{~B}} \overline{\mathrm{C}}
$$

QUESTION 4 [20 MARKS]
a) Computers have evolved from the $1^{\text {st }}$ generation to the current $5^{\text {th }}$ Generation. Explain the electrical/processing technology that was used in each generation.
b) Explain four basic types of registers found in a computer CPU
c) Explain the following Boolean laws using an example each
i) Involution
ii) Commutative
(2marks)
iii) Complementary

QUESTION 5 [20 MARKS]

a) Explain the importance of Karnaugh map in Digital electronics
(2marks)
b) Below is a circuit. Use it to answer the questions that follow:-

i) Write the truth table of the circuit above
(4marks)
ii) From the truth table, can the circuit be minimized? If so draw the minimized circuit.
c) Convert 362.35_{8} into a decimal number
d) Draw the symbol and truth table of FOUR basic logic gates

