ACSC 102

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR FIRST SEMESTER EXAMINATIONS FOR BACHELORS OF APPLIED COMPUTER SCIENCE

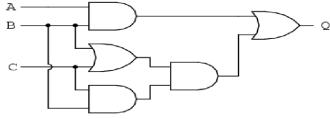
ACSC 102: INTRODUCTION TO DIGITAL LOGIC

STREAMS: BSC. APPLIED COMPUTER SCIENCE Y1S1

TIME: 2 HOURS

DAY/DATE: TUESDAY 15/12/2020

11.30AM - 1.30PM


INSTRUCTIONS

- 1. Answer all questions in section A and any other two questions from section B.
- 2. No Reference Material is allowed in the exam Room.
- 3. All Mobile phones should be switched off in the exam room.

SECTION A (COMPULSORY)

QUESTION 1(COMPULSORY) [30 MARKS]

- a) Outline FOUR differences between digital and analogue electronics (4marks)
- b) A certain student claimed that a NOT gate cannot take more than one input at a time. Is the statement true? Justify. (3marks)
- c) Below is a digital circuit. Use it to answer the questions below: -

i) Write output Q.

(2marks)

ii) Simplify output Q of the above circuit (show the simplification process)

(3marks)

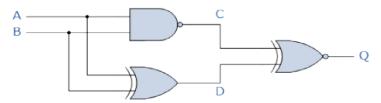
ACSC 102

iii) Draw a resultant circuit after the simplification.	(2marks)
d) Outline FIVE digital output devices of a computer	(5marks)
e) Perform the following decimal arithmetic using binary $136_{10} + 345_{10}$	10 (4marks)
f) Draw a truth table of an XNOR with two inputs	(2marks)
g) Differentiate between serial and parallel port, naming a device that each port.	can be connected to (5marks)
SECTION B (Answer two question from this section) QUESTION 2 [20 MARKS]	
 a) Use truth table to prove the following Boolean algebra. i) A + A B = A + B ii) A + A B = A 	(4 marks) (4marks)
b) There are various adapter cards that can be connected onto a computer. Outline FIVE such cards and their functions. (10marks)	
c) Explain Two characteristics of RAM	(2marks)
QUESTION 3 [20 MARKS] a) With reference to decoders i) Using an example of a digital device, explain the function of a decoder (3marks)	
ii) Draw a circuit diagram of a 2 to 4 decoder	(5marks)
iii) Draw a truth table of the above decoder	(4 marks)
b) Convert binary 1110001 ₂ into Decimal	(3marks)
c) Use Karnaugh map to minimize the equation below	(5marks)
$Z = f(A,B,C) = \overline{A}B + B\overline{C} + BC + A\overline{B}\overline{C}$	

QUESTION 4 [20 MARKS]

a) Computers have evolved from the 1st generation to the current 5th Generation. Explain the electrical/processing technology that was used in each generation.

(10marks)


b) Explain four basic types of registers found in a computer CPU (4marks)

- c) Explain the following Boolean laws using an example each
 - i) Involution (2marks)
 - ii) Commutative
 - iii) Complementary

- (2marks)
- (2marks)

QUESTION 5 [20 MARKS]

- a) Explain the importance of Karnaugh map in Digital electronics (2marks)
- b) Below is a circuit. Use it to answer the questions that follow:-

i) Write the truth table of the circuit above (4marks)
ii) From the truth table, can the circuit be minimized? If so draw the minimized circuit. (2marks)
c) Convert 362.35₈into a decimal number (4marks)
d) Draw the symbol and truth table of FOUR basic logic gates (8marks)

.....