CHUKA

FIRST YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE

 DEGREE IN ECONOMICS
MSEC 831: ECONOMETRICS

STREAMS: MSEC Y1S2
TIME: 3 HOURS
DAY/DATE: WEDNESDAY 5/12/2018
2.30 P.M - 5.30 P.M.

INSTRUCTIONS:

- Answer Question ONE (COMPULSORY) and any THREE Questions
- Do not write anything on the question paper

QUESTION ONE -COMPULSORY

Multicollinearity will always be an headache when investigating a problem with many variables.
(i) Discuss various methods you as an econometrician would always use to detect that you have multicollinearity problem in your model. [3 Marks]
(ii) Outline the various approaches you would use to handle the problem. [3 Marks]
(iii)In your opinion, do these approaches provide any better estimates of your parameters? Explain your answer with the help of examples of your choice. [10 Marks]
(iv)Outline consequences of multicollinearity. [5 Marks]
(v) Explain in details how you will run a linear regression using SPSS. Outline and explain all the possible features found in the SPSS output that will enable you identify the problem of multicollinearity. [9 Marks]

QUESTION TWO

(a) Re-write the following model in the required forms:
$Y_{i}=\beta_{1}+\beta_{2} X_{i 2}+\beta_{3} X_{i 3}+\beta_{4} X_{i 4}+\epsilon_{i}$
(i) In summation notation [3 Marks]
(ii) In matrix form, inserting the dimensions of the matrices in the equations write out the $6^{\text {th }}$ equation of the above model. [5 Marks]
(b) For the regression model given below:
$\underset{n x i}{Y}=\begin{array}{cc}X & \beta \\ n x k & k x i\end{array}+\underset{n x i}{\epsilon_{i}}+$
Determine:
(i) The expectation of Y [3 Marks]
(ii) Cov. (Y)
(iii) $\operatorname{Cov}\left(\varepsilon_{i}\right)$

QUESTION THREE

The money market of an economy is defined with the following model.
$M_{D}=\propto_{0}+\propto_{1} Y+\propto_{2} \gamma+\propto_{3} P+\epsilon_{i}$
$M_{s}=\beta_{0}+\beta_{1} Y+\beta_{2} Y_{t-1}+\beta_{3} M_{t-1}+\varepsilon_{2}$
$M_{D}=M_{s}=M$ where:
M_{D}, M_{S} - Demand and supply of money
Y - Income
γ-Rate of interest
P-price
(i) Determine the identification state of each of the equations in the system.
(ii) State the method you would use to estimate the functions.
(iii)After finding out that β_{2} and β_{3} are statistically insignificant, the supply function is redefined excluding Y_{t-1} and M_{t-1}. What is the identification state of each of the equations? [8 Marks]
(iv)Which estimation methods would you use in this case?
[4 Marks]

QUESTION FOUR

To assess the impact of capacity utilization on inflation, an econometrician obtained the following results (t- ratios in parenthesis) using annual time series data for 20 years.
$Y_{t}=-40.153+0.1532 X_{t}+0.2540 X_{t-1}$
(-9.354) (3.751) (5.778)

Where: Y_{t} - Inflation rate in year " t "
X_{t} - Capacity utilization in manufacturing in year " t "
$X_{t-1^{-}}$Capacity utilization in the year $\mathrm{t}-1$
(i) Establish whether the estimated model is a distributed lag model or an autoregressive model.
(ii) Compute the short run and long run multipliers.
(a) Discuss four main limitations of koyck's transformation.
(b) What are the advantages and disadvantages of Almon lag scheme.

QUESTION FIVE

(i) Derive the normal equations of a simple regression model using the matrix method.
(ii) State and prove all the properties of this model.

