CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION ARTS

MATH 121: CALCULUS I

STREAMS: BED (ARTS)			TIME: 2 HOURS	
DAY/DATE: TUESDAY 21/04/2020			11.30 AM - 1.30 PM	
INSTRUCTIONS:				
Answer Question One and any other Two Questions				
QUES	STION	ONE (COMPULSORY) – 30 MARKS		
(a)	Deter	mine the domain of the functions $f(x) = \sqrt{4 + 3x - x^2}$	[3 marks]	
(b)	Discu	ss the continuity of the functions $f(x) = \frac{x^2 - 81}{x + 9}$	[3 marks]	
(c)	Evaluate the limits			
	(i)	$\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$	[3 marks]	
	(ii)	$\lim_{x \to 0} \frac{1 - \cos x}{x}$	[3 marks]	
(d)	Differentiate the following functions with respect to x.			
	(i)	$y = \frac{x^2 + 1}{x^3 - 3x}$	[3 marks]	
	(ii)	$y = \sin x^2$	[3 marks]	
(e)	Locat	Locate the stationery point of the curve $y = lnx - x$ [2 marks]		
(f)	Given $x = sin t$ and $y = cos t$, determine $\frac{dy}{dx}$ [2 marks]			

(g) Given
$$y \cos x = e^x$$
 show that $\frac{d^2y}{dx^2} - 2\tan x \frac{dy}{dx} - 2y = 0$ [4 marks]

(h) Determine the slope of the tangent line to the graph $x^2 + 4y^2 = 4$ at the point $\left(\sqrt{2}, -\frac{1}{\sqrt{2}}\right)$ [4 marks]

QUESTION TWO (20 MARKS)

(a) Evaluate
$$\lim_{x \to \infty} \sqrt[5]{\frac{x^3 - 7x + 1}{32x^3 + 5x^2 - 7}}$$
 [3 marks]

- (b) A spherical balloon in being blown up so that its volume increases at the rate of 2cm³ per second. Find the rate at which the radius increases when the volume of the balloon is 100cm³ [5 marks]
- (c) Differentiate the following functions with respect to x:

(i)
$$y = x^{x^2}$$
 [4 marks]

(ii)
$$y = sin^{-1}(lnx)$$
 [4 marks]

(iii)
$$y = (3x - 2x^2)^3(5 + 4x)$$
 [4 marks]

QUESTION THREE (20 MARKS)

- (a) Determine all the turning points of the curve $y = 5 + 24x 9x^2 2x^3$ and sketch the curve. [5 marks]
- (b) Determine the coordinates of the points on the curve $y = x^3 6x^2 + 12x + 2$ at which the tangent is parallel to the line y = 3x. [5 marks]
- (c) Given $y^3 + xy^2 5x + x^2 = 5$, determine $\frac{dy}{dx}$ [3 marks]

(d) Given that $f(x) = 5 - \frac{4}{x}$, find all the values of C in the open interval (1,4) such that $f'(c) = \frac{f(4) - f(1)}{4 - 1}$ [3 marks]

(e) Evaluate
$$\lim_{x \to \infty} \frac{6e^{4x} - e^{-2x}}{8e^{4x} - e^{2x} + 3e^{-x}}$$
 [4 marks]

QUESTION FOUR (20 MARKS)

- (a) Show that $\frac{d}{dx}(\sin x) = \cos x$ [5 marks]
- (b) Sketch the graph of f(x) with the following characteristics

$$f(2) = f(4) = 0$$

$f'(x) < 0 \ if \ x < 3$	
f'(3) is undefined	
f'(x) > 0 i f x > 3	
$f''(x) < 0 \ if \ x \neq 0$	[3 marks]

[4 marks]

[3 marks]

- (c) Find f'(x) given $f(x) = x^4 \sin x^3$
- (d) Given $f(x) = x^3 + 3x^2 + 2$, determine the interval where f(x) is increasing and decreasing. [4 marks]
- (e) Use the method of first principles to determine $\frac{dy}{dx}$ given $y = \frac{2}{x}$ [2 marks]

QUESTION FIVE (20 MARKS)

- (a) Sketch the intersecting graphs of the equations $2x^2 + y^2 = 6$ and $y^2 = 4x$ and show that they are orthogonal. [6 marks]
- (b) Given $y = \frac{f(x)}{g(x)}$, $g(x) \neq 0$, where f(x) and g(x) are differentiable functions of x, show that $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$ [5 marks]
- (c) Approximate In 1.1 given In 1=0

(d) Find the equation of the normal and the tangent to the curve $y = \frac{4}{x}$ at the point x = 1[4 marks]

(e) Determine $\frac{dy}{dx}$ given $y = 2^x$ [2 marks]