UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS OF SCIENCE IN APPLIED MATHEMATICS

MATH 809: COMPLEX ANALYSIS

STREAMS: MSC (APP MATH)

CHUKA

DAY/DATE: TUESDAY 14/04/2020

INSTRUCTIONS:

- Answer any Three Questions
- Use advanced scientific calculators

QUESTION ONE (20 MARKS)

- Find all the complex roots of the following equations (a)
 - (i) $Z^6 = -9$ [8 marks]
 - (ii) $Z^2 + 2z + (1 i) = 0$ [5 marks]
- Find the Laurent series of f(z) in the given domain $f(z) = \frac{z^2}{z^2 3z + 2}$ in the domain (b) $|\leq |z| \leq 2$ [7 marks]

QUESTION TWO (20 MARKS)

- Let c be the circle |z| = 1 oriented clockwise. (a)
 - Compute $\int_{c} \frac{1}{z^2 8z + 1} dz$ [5 marks] (i)

Given that $Z = e^{i\theta}$ show that $\int \frac{1}{z^2 - 8z + 1} dz = \int_{-\pi}^{\pi} \frac{1}{4 - \cos \theta} d\theta$ and hence compute (ii) $\int_0^{\pi} \frac{1}{4-\cos\theta} d\theta$ [9 marks]

TIME:3 HOURS

UNIVERSITY

11.30 AM – 2.30 PM

(b) Find all the complex roots of the following equations

(i)	$\bar{z} = z$	[3 marks]
(ii)	$z \ \overline{z} = 9$	[3 marks]

QUESTION THREE (20 MARKS)

(a)	(i)	Explain the meaning of a conformal mapping.	[2 marks]
	(ii)	Consider the transformation $w = (1 + i)z$ on the rectanglae whose are $(1, 0)$, $(1, i)$, $(0, i)$ and $(0, 0)$. Sketch the diagram and describe transformation.	e corner points the [4 marks]
(b)	Find the Mobius map that maps the points		
	$z_2 =$	2, $z_3 = i$, $z_4 = -2$ onto $w_2 = 1$, $w_3 = i$ and $w_4 = -1$ respectively	. [6 marks]
(c)	Verify that $u(x, y)$ is harmonic and find the conjugate harmonic function $v(x, y)$ given that $u(x, y) = 3x^2y + 2x^2 - y^3 - 2y^2$ and $v(x, y) = u + iv$ [8 marks]		v(x, y) given [8 marks]
QUESTION FOUR (20 MARKS)			
(a)	(i)	State the Cauchy integral theorem and Cauchy integral formula.	[4 marks]
	(ii)	Hence evaluate the integral using Cauchy's integral formula.	

$$\int_{c} \frac{2dz}{z^2 - 1}$$
 [8 marks]

(b) (i) Show that
$$\lim \frac{4z^5}{z^5 - 42z} = 4$$
 [4 marks]

(ii) Provided that
$$z \neq -\frac{1}{2}$$
, find $f'(z)$ given that $f(z) = \frac{z+1}{2z+1}$ [4 marks]

QUESTION FIVE (20 MARKS)

(a) Consider the functions
$$f(z) = \frac{1}{z^4 + 5z^2 + 6}$$
 find,

(b) Graph the region
$$\{z: |z - 4i + 2| > 2\}$$
 in the complex plans [3 marks]
(c) Compute $\lim_{z \to a} \frac{iz^3 + 1}{2}$ [5 marks]

(c) Compute
$$\lim_{z \to i} \frac{t^{2}+1}{z^{2}+1}$$
 [5 marks]