CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS OF SCIENCE IN PURE MATHEMATICS

MATH 807: GROUP THEORY I

STREAMS: MSC (PURE MATH) P/T

TIME: 3 HOURS

8.30 AM - 11.30 AM

DAY/DATE: TUESDAY 14/04/2020

INSTRUCTIONS:

- Answer any three questions
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE (20 MARKS)

OUESTION TWO (20 MARKS)				
(e)	Show that every finite abelian group is nilpotent.	[3 marks]		
(d)	Define a composition series and prove that every finite group has a compo	osition series. [5 marks]		
(c)	State without proof Jordan-Holder theorem. Find all the composition series verify Jordan-Holder theorem.	s of Z ₁₅ and [7 marks]		
(b)	Find a composition series of the dihedral group D_4 .	[2 marks]		
(a)	Define a subnormal series of a group G and find a subnormal series of \mathbb{Z}_{30}	. [3 marks]		

QUESTION TWO (20 MARKS)

(a) Let G be a group and G^{I} be the derived group of G. show that $G'_{G^{I}}$ is abelian and that G'_{H} if abelian then $G^{I} \subseteq H$. [7 marks]

(b)	Show that G^{I} is a normal subgroup of G.	[4 marks]
(c)	If G is a group $G^I \subset H \subset G$, show that $H \lhd G$.	[4 marks]
(d)	Show that every p-group is nilpotent.	[5 marks]

QUESTION THREE (20 MARKS)

(a)	Show that S_3 is a semi direct product of subgroup isomorphic to C_3 by a subisomorphic to C_2 .					
(b)	Define a soluble group and show whether or not S_3 is soluble.					
(c)	Let $H \lhd G$. Show that if both H and $G/_H$ are soluble, then G is soluble. [
(d)	Show that Hxl and IxK are normal subgroups of HxK : these two subgroups generate HxK and their intersection is (1,1). [6 marks]					
(e)	List all the abelian and non-isomorphic abelian groups of order 720. [3 marks]					
QUESTION FOUR (20 MARKS)						
(a)	Let G be a group					
	(i)	Define an upper central series of G.	[2 marks]			
	(ii)	Define a lower central series of G.	[2 marks]			
(b)	Define a nilpotent group and show that a nilpotent group is soluble. [5 marks]					
(c)	Show that a group G is soluble if and only if its derived series terminates at the identity group. [5 marks]		t the identity [5 marks]			
(d)	(i)	Give the subgroup structure of S_3 .	[4 marks]			
	(ii)	List all the sylow 2-subgroups and all the sylow 3-0subgroups of <i>S</i>	3. [2 marks]			