CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN APPLIED MATHEMATICS

MATH 803: ADVANCED MATHEMATICS FOR CHEMISTS
STREAMS: MSC (APPLIED MATHS)
TIME: 3 HOURS
DAY/DATE: MONDAY 06/04/2020
11.30 A.M. - 2.30 P.M.

INSTRUCTIONS: Answer any FOUR questions

QUESTION ONE (15 MARKS)

(a) Find the domain of the function below $f(x)=\sqrt{3 x^{2}-3 x-18}$
(b) Given that $y=\cos ^{-1}(2 x+3)$, find $\frac{d y}{d x}$
(c) Evaluate $\lim _{x \rightarrow \infty} \frac{6 x^{3}+5}{2 x^{3}+1}$
[5 marks]
(d) Given that $y=f(x)=\frac{1}{x^{2}+1}$, find $\frac{d y}{d x}$ from first principles [3 marks]
(e) Differentiate $y=2^{3 x}$ at the point $x=1$ [2 marks]
(f) Find the equations of lines tangent to the curve $y^{2}-6 x^{2}+4 y+1=0$ at the point $(2,1)$
[4 marks]

QUESTION TWO (15 MARKS)

(a) Determine $\int \frac{4}{(5 x-3)} d x$
(b) Evaluate $\int_{0}^{1} 5 x e^{4 x} d x$ using the by parts method
(c) Determine the volume of the solid of revolution formed when the curve $y=2$ rotated 360° about the x axis between the limits $x=0$ to $x=3$
(d) Determine $\int \frac{11-3 x}{x^{2}+2 x-3} d x$ using partial fractions

MATH 803

(e) Evaluate the following integrals
(i) $\int \operatorname{In} 10+\frac{1}{x^{2}}-\sqrt{x^{3} d x}$
[2 marks]
(ii) $\int \frac{d x}{16 x^{2}+9}$

QUESTION THREE (15 MARKS)

(a) Find the volume of revolution bounded by the region $y=x^{3}, x=2$ and $x=4$ about $y=1$
(b) Find the area of the triangle PQR with vertices $p=(347), Q=(061)$ and $\mathrm{R}(5-24$
(c) Verify whether the vectors (-1 22), (2-3 1), (-4 73) are coplanar [2 marks]
(d) Solve the differential equation $y^{\prime \prime}+4 y^{\prime}+5 y=0 \quad$ [2 marks]
(e) State the order, linearity and degree of the following differential equations.
(i) $\frac{d^{3} y}{d x^{3}}+4 e^{y}=0$
[2 marks]
(ii) $\quad\left(1+\left(\frac{d y}{d x}\right)^{2}\right)^{3}=\left(\frac{d^{3} y}{d x^{3}}\right)^{3}$
[2 marks]
(f) Determine whether $y=\frac{x^{2}}{3}+\frac{1}{x}$ is a solution of the differential equation $x \frac{d y}{d x}+y=x^{2}$ [2 marks]

QUESTION FOUR (15 MARKS)

(a) Solve the differential equation $y^{\prime}=x\left(1+y^{2}\right)$ by the method of separation of variables
(b) Verify whether the differential equation below is exact hence solve

$$
\left(4 x^{3} y^{3}+3 x^{2}\right) d x+\left(3 x^{4} y^{2}+6 y^{2}\right) d y=0
$$

[3 marks]
(c) Find an integrating factor for $\left(3 x y+6 y^{2}\right) d x+\left(2 x^{2}+9 x y\right) d y=0$ and solve the equation
(d) Find the general solution of
(i) $y^{\prime \prime}+6 y^{\prime}+5 y=0$
[3 marks]
(ii) $y^{\prime \prime}+4 y^{\prime}+13 y=0$
[3 marks]

MATH 803

QUESTION FIVE (15 MARKS)

(a) Find the angle between the vectors $A=3 i+6 j+9 k, B=-2 i+3 j+k \quad$ [2 marks]
(b) Find the area of the parallelogram formed by the vectors

$$
\begin{equation*}
A=3 i+j-2 k, B=i-3 j-2 k \tag{2marks}
\end{equation*}
$$

(c) Find the value of c for which the vectors $c i+j+k$ and $-i+2 k$ are perpendicular
[2 marks]
(d) Find the inverse of matrix $A=\left[\begin{array}{ccc}1 & 5 & -2 \\ 3 & -1 & 4 \\ -3 & 6 & -7\end{array}\right]$ [4 marks]
(e) Solve the simultaneous equations below both by the cramers rule and the matrix cofactor method
(i) $3 x+y+z=10$
(ii) $2 x-3 y+5 z+9=0$
(iii) $x+2 y-z=6$

