CHEM 815

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF MASTER OF SCIENCE IN CHEMISTRY

CHEM 815: SPECIAL TOPICS IN INORGANIC CHEMISTRY

STREAMS: MSC (CHEM) TIME: 3 HOURS

DAY/DATE: WEDNESDAY 15/04/2020 11.30 A.M. – 2.30 P.M.

INSTRUCTIONS: ANSWER ALL QUESTIONS

QUESTION ONE (20 MARKS)

a)	a) Explain the term amorphous alloys	(2 marks)
----	--------------------------------------	-----------

b) Write short notes on the following

• `	C1 '11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(2 1)
11	Chill block melt spinning	(3 marks)
	CHILL DIOCK THEIL SDHILLING	(.) Highest

ii) Planar flow casting (3 marks)

c) Give the three major difference between a high vacuum and a Schlenk line (3 marks)

d) i) Define a cannula (1 mark)

ii) Write short notes on the use of a cannula (3 marks)

e) Briefly explain the two common methods of crystal growth for organometallic compounds

(4 marks)

f) Briefly discuss briefly the glove bag (2 marks)

QUESTION TWO (20 MARKS)

a) Briefly explain the following terms

• \	3.6	(2 1)
11	Magnetorestrictive strain	(2 marks)
	MASHELUIESHILLIVE SHAIH	VZ IIIALKSI

ii) Engineering magnetorestriction (2 marks)

b) List four common methods for addition of compounds under an inert atmosphere (2 marks)

CHEM 815

c)	Enumerate dour factors to be considered when choosing a catalyst	(2 marks)			
d)	Using equations explain the hydroformylation (oxo) process	(3 marks)			
e)	Discuss polymer supported catalysts	(3 marks)			
f)	Using an equation define asymmetric synthesis	(3 marks)			
g)	Differentiate between a catenand and a catenate	(2 marks)			
h)	Define olefin metathesis	(1 mark)			
QUESTION THREE (20 MARKS)					
a)	Write short notes on the Glove box	(3 marks)			
b)	b) Differentiate between				
	(i) Homogeneous and heterogeneous catalysts	(2 marks)			
	(ii) Physisorption and chemisorption	(2 marks)			
c)	Briefly explain the following terms				
	i) Catalytic cycle	(2 marks)			
	ii) Catalytic Turn over number (TON)	(2 marks)			
	iii) Biphasic catalysts	(2 marks)			
d)	Draw a schematic representation of an alkene polymerization on the surface of a	Ziegler-			
	Natta catalyst	(5 marks)			
e)	Write the application of the following techniques in surface science	(2 marks)			
	i) XPS				
	ii) XANES				