MATH 125 - Discrete Mathematics

Instructions

1. Answer question ONE and any OTHER TWO questions from the remaining FOUR
2. Show all your workings on the answer booklet provided.
3. Marks will be awarded for the correct working even if the answer is wrong.
4. Marks for each Part of a question are as shown.
5. Start a new question on a fresh page.

QUESTION ONE - 30 MARKS

a) Let *be a binary operation on the set of integers, defined by
$a * b=a+b-a b$ for every $a, b \in Z$. Determine whether or not * is
i. Commutative
ii. Associative
iii. Find an identity element with respect to * if it exists
b) Find the product of the polynomials $f(x)=4 x^{3}-2 x^{2}+3 x-1$ and $g(x)=3 x^{2}-x-4$ over Z_{4}

4 Marks.
c) By use of examples, differentiate partial and total ordering
d) Determine the validity of the following argument S_{1} : Thieves are jailed
S_{2} : Serious people read good books
S_{3} : Graduates are serious people
Conclusion: No graduate is thief
3 Marks.
e) Let A, B and C be three finite sets with $|A|=8,|B|=10,|C|=8,|A \cap B|=5$, $|A \cap C|=4, \quad|B \cap C|=7$ and $|A \cup B \cup C|=13$. Find $|A \cap B \cap C|$.

4 Marks.
f) Find the product of the polynomials $f(x)=7 x^{3}-4 x^{2}+3 x-11$ and

$$
g(x)=15 x^{3}+3 x^{2}-x-14 \text { over } Z_{5} \quad \text { 4 Marks }
$$

e) Let R be a relation defined on the set $A=\{0,1,2,3\}$ containing the ordered pairs $(0,1),(1,1),(1,2),(2,0),(2,2)$ and $(3,0)$. Determine
i. The reflexive closure of R
ii. The symmetric closure of $\mathrm{R} \quad 4$ Marks
f) Translate the logical equivalence $(T \wedge T) \vee \neg F=T$ into an identity in Boolean algebra

2 Marks

QUESTION TWO - 20 MARKS.

a) Given the propositional variables,
p: The day was June $23^{\text {rd }} 2020$
q: Four out of six patients tested positive of Covid.

r : Two patients succumbed to Covid(died).

Write the following statements in terms of $\mathrm{p}, \mathrm{q}, \mathrm{r}$ and the logical connectives.
i) The day was June $23^{r d} 2020$ and the four patients out the six were confirmed positive of Covid.
ii) If two patients died, then the day June $23^{\text {rd }} 2020$ and the hospital confirmed the four out of the six tested positive of Covid.
iii) Represent the statement in ii) above using their respective propositional variables. Construct a truth table for the statement. State with reasons the type of compound statement this is.

8 Marks.
b) Show that $(p \rightarrow q) \equiv\{(\sim \mathrm{p}) \vee q\}$

2 Marks
a) Prove the DeMorgan's law in Boolean algebra $(x+y)^{\prime}=x^{\prime} y^{\prime}$

5 Marks
b) d. (i) Explain the following terminologies as used in set theory

- Power set
- Set cardinality
(ii) Find $\mathrm{P}(\mathrm{A})$ of $\mathrm{A}=\{(\mathrm{a}, \mathrm{b}),(\mathrm{c}),(\mathrm{d}, \mathrm{f}, \mathrm{g})\}$

5 Marks.

QUESTION THREE - 20 MARKS
a) Use Euclidean Algorithm to find the gcd of 711 and 663, and express it as a linear combination of 711 and 663.

5 Marks
(ii)Find all the integers x which are a solution to the following congruence relation $663 x \equiv 6 \bmod 711$
b) Let $Z=\{x / x$ is an integer $\}$, Constitute two subsets A_{1} and A_{2} such that they are a partition of Z .

4 Marks
c) Prove by mathematical induction that
$1^{2}+2^{2}+3^{2}+4^{2}+\cdots-\cdots-\cdots+n^{2}=\frac{n(n+1)(n+2)}{6}$
6 Marks

QUESTION FOUR - 20 MARKS.

a) a) Consider the third order homogeneous recurrence relation $a_{n}=2 a_{n-1}+3 a_{n-2}$
i. Find the general solution 5 Marks
ii. Find the initial solution given $a_{0}=1 a_{1}=3$,

5 Marks marks)
c. What are Bell Numbers

Let $S=\{1,2,3\}$ find the Bell Number of Set S.
5 marks
d) Given that $f(x)=\frac{1}{3} x+\frac{2}{3}$ and $g(x)=3 x-2$, find
i) $(g \circ f)(x)$
ii) $(f \circ g)(x)$

5 Marks.

QUESTION FIVE - 20 MARKS

a) Simplify the Boolean expression $(\overline{\bar{A} \bullet B})+(\overline{\bar{A}+B})$ by using De Mogarn's laws and the rules of Boolean algebra.

4 Marks
b) With the aid of a diagrammatic explanation, device a logic system that meets the requirements of $(\overline{P+\bar{Q}}) \bullet(\overline{\bar{R}+S})$

5 Marks
a) Use the principle of mathematical induction to prove that $1^{2}+3^{2}+5^{2}+\ldots .+(2 n+1)^{2}=\frac{(n+1)(2 n+1)(2 n+3)}{3}$

6 Marks.
c) Differentiate between a binary operator and a postulates

5 Marks

Good Luck

