MATH 125 – Discrete Mathematics

Instructions

- 1. Answer question **ONE** and any **OTHER TWO** questions from the remaining FOUR
- 2. Show all your workings on the answer booklet provided.
- 3. Marks will be awarded for the correct working even if the answer is wrong.
- 4. Marks for each Part of a question are as shown.
- 5. Start a new question on a fresh page.

QUESTION ONE – 30 MARKS

- a) Let *be a binary operation on the set of integers, defined by
- a*b = a+b-ab for every $a,b \in Z$. Determine whether or not * is
 - i. Commutative
 - ii. Associative
 - iii. Find an identity element with respect to * if it exists

5 Marks.

b) Find the product of the polynomials $f(x) = 4x^3 - 2x^2 + 3x - 1$ and

 $g(x) = 3x^2 - x - 4$ over Z_4

4 Marks.

c) By use of examples, differentiate partial and total ordering

4 Marks.

d) Determine the validity of the following argument

 S_1 : Thieves are jailed

 S_2 : Serious people read good books

 S_3 : Graduates are serious people

Conclusion: No graduate is thief

3 Marks.

e) Let A, B and C be three finite sets with |A| = 8, |B| = 10, |C| = 8, $|A \cap B| = 5$, $|A \cap C| = 4$, $|B \cap C| = 7$ and $|A \cup B \cup C| = 13$. Find $|A \cap B \cap C|$.

4 Marks.

- f) Find the product of the polynomials $f(x) = 7x^3 4x^2 + 3x 11$ and $g(x) = 15x^3 + 3x^2 x 14$ over Z_5 4 Marks
- e) Let R be a relation defined on the set $A = \{0,1,2,3\}$ containing the ordered pairs (0,1), (1,1), (1,2), (2,0), (2,2) and (3,0). Determine
 - i. The reflexive closure of R
 - ii. The symmetric closure of R

4 Marks

f) Translate the logical equivalence $(T \wedge T) \vee \neg F = T$ into an identity in Boolean algebra **2** *Marks*

QUESTION TWO – 20 MARKS.

a) Given the propositional variables,

p: The day was June 23rd 2020

q: Four out of six patients tested positive of Covid.

r: Two patients succumbed to Covid(died).

Write the following statements in terms of p, q, r and the logical connectives.

- i) The day was *June* 23^{rd} 2020 and the four patients out the six were confirmed positive of Covid.
- ii) If two patients died, then the day June 23rd 2020 and the hospital confirmed the four out of the six tested positive of Covid.
 - iii) Represent the statement in ii) above using their respective propositional variables. Construct a truth table for the statement. State with reasons the type of compound statement this is.

8 Marks.

b) Show that $(p \rightarrow q) \equiv \{(\sim p) \lor q\}$

2 Marks

a) Prove the DeMorgan's law in Boolean algebra (x + y)' = x'y'

5 Marks

- b) d. (i) Explain the following terminologies as used in set theory
 - Power set
 - Set cardinality
 - (ii) Find P (A) of $A = \{ (a,b), (c), (d,f,g) \}$

5 Marks.

QUESTION THREE – 20 MARKS

a) Use Euclidean Algorithm to find the gcd of 711 and 663, and express it as a linear combination of 711 and 663. *5 Marks*

(ii)Find all the integers x which are a solution to the following congruence relation $663x \equiv 6 \mod 711$ 5 Marks

b) Let $Z = \{x \mid x \text{ is an integer }\}$, Constitute two subsets A_1 and A_2 such that they are a partition of Z.

4 Marks

c) Prove by mathematical induction that

1² + 2² + 3² + 4² + -----
$$n^2 = \frac{n(n+1)(n+2)}{6}$$

6 Marks

QUESTION FOUR - 20 MARKS.

- a) a) Consider the third order homogeneous recurrence relation $a_n = 2a_{n-1} + 3a_{n-2}$
 - i. Find the general solution

5 Marks

ii. Find the initial solution given $a_0 = 1a_1 = 3$, marks) 5 Marks

c. What are Bell Numbers

Let $S = \{1, 2, 3\}$ find the Bell Number of Set S.

5 marks

- d) Given that $f(x) = \frac{1}{3}x + \frac{2}{3}$ and g(x) = 3x 2, find
 - i) $(g \circ f)(x)$
 - ii) $(f \circ g)(x)$

5 Marks.

QUESTION FIVE - 20 MARKS

a) Simplify the Boolean expression $(\overline{\overline{A} \bullet B}) + (\overline{\overline{A} + B})$ by using De Mogarn's laws and the rules of Boolean algebra.

4 Marks

b) With the aid of a diagrammatic explanation, device a logic system that meets the requirements of $(P + \overline{Q}) \bullet (\overline{R} + S)$

5 Marks

a) Use the principle of mathematical induction to prove that

$$1^{2} + 3^{2} + 5^{2} + \dots + (2n+1)^{2} = \frac{(n+1)(2n+1)(2n+3)}{3}$$

6 Marks.

c) Differentiate between a binary operator and a postulates

5 Marks

Good Luck