EXAMINATION FOR THE AWARD OF DIPLOMA IN

MATH 0121: INTRODUCTORY MATHEMATICS
STREAMS: Y2 S2
TIME: 2 HOURS

DAY/DATE: THURSDAY 9/04/2020
11.30 A.M - 1.30 P.M.

INSTRUCTIONS

- Answer ALL questions in Section A and any other TWO in Section B.
- Do not write anything on the question paper
- Non -programmable electronic calculators may be used

SECTION A

QUESTION ONE [30 MARKS]
(a) State the properties of real numbers in the equations below.
[4 Marks]
i) $\quad 4(5+6)=20+24$
ii) $7+6=6+7$
iii) $5 \times 1=5$
iv) $5=5+0$
b) Classify each of the following numbers.
i) 3
ii) 4.632
iii) $-2+3$ i
c) Find the modulus given $\mathrm{z}=2+3 \mathrm{i}$
d) Show that AUB $=$ BUA
e) Use the following piecewise functions to evaluate for the given values of x .

$$
f(x)\left\{\begin{array}{cc}
-x^{2}+2 & x<-2 \\
2 x+1 & \text { for }-2 \leq x<0 \\
x^{2}+2 & \\
x \geq 0
\end{array}\right.
$$

i) $\quad \mathrm{f}(5)$
[2 Marks]
ii) $\quad \mathrm{f}(-4)$
[2Marks]
iii) $\quad \mathrm{f}(-2)$
[2 Marks]
f) Write down the series $\quad \sum_{j=-1}^{S} 2^{i}$ in full and evaluate it.
[2 Marks]
g) In how many ways can the letters of word CELEBRATION be arranged in order for the vowels to come together.
[3 Marks]
h) In an AP of 25 terms, the $4^{\text {th }}$ term is 4 and the $22^{\text {nd }}$ term is 5 . Find the sum of the AP. [5 Marks]

QUESTION TWO

[20 MARKS]
a) Use long division method to obtain the quotient when
$4 \mathrm{x}^{4}+2 \mathrm{x}^{3}-7 \mathrm{x}^{2}+\mathrm{x}-3$ is divided by $\mathrm{x}-2$
[5 Marks]
b) Given $f(x)=3 x-1$

$$
\begin{equation*}
h(x)=2 x+2 \tag{5Marks}
\end{equation*}
$$

Show that in general foh (x) \neq hof (x)
c) The first term of a sequence is 6 . Each term is thrice the term before. Write down the first five terms of the sequence.
d) Given $\theta_{1}=-2-3 \mathrm{i}$

$$
\theta_{2}=6+2 i
$$

Evaluate i) $\theta_{2} \theta_{1}$
ii) $\frac{\theta 1}{\theta 2}$

QUESTION THREE [20 MARKS]

a) Expand $(-3 x+2 y)^{7}$
b) Given that $f(x)=x-2$ and $g(x)=3 x^{2}+1$. Evaluate
i) $f o g(2)$
[2 Marks]
ii) gof (3)
[2 Marks]
ii) fof (x)
[2 Marks]
c) Solve for n in $\mathrm{n}_{2}=28$
[5 Marks]
d) Using examples justify the following statements.
i) All natural numbers are intergers but all intergers are not natural numbers.
[2 Marks]
ii) All intergers are rational numbers.
[2 Marks]

QUESTION FOUR [20 MARKS]

a) Given $f(x)=2 x+1$
[2 Marks]

$$
g(x)=-3-4 x
$$

Find
(i) $f(x)+g(x)$
[2 Marks]
(ii) $g(x)-f(x)$
[2 Marks]
(b) Simplify $\frac{\cos ^{2} \theta}{1+\sin \theta}+\frac{\cos ^{2} \theta}{1-\sin \theta}$
(c) An AP has the $2^{\text {nd }}$ term 5 and $5^{\text {th }}$ term 9. Find the first term and common difference.
[5 Marks]
(d) Prove analytically that (AnB) $\mathrm{n} \mathrm{C}=\mathrm{An}(\mathrm{BnC})$
[6 Marks]

QUESTION FIVE

a) A school committee of 9 members is to be chosen from 8 parents and six teachers and the principal. How many ways can the committee be formed in order to include:
i) The Principal [1 Mark]
ii) The Principal and five parents.
[2 Marks]
b) The $2^{\text {nd }}$ term of a GP is 2 and $4^{\text {th }}$ term is 18 . Find the possible values of the common ratio and the corresponding first terms.
c) Construct the truth table to verify if the statements in (PVQ) and $\sim P^{\wedge} \sim \mathrm{Q}$ are equivalent.
d) Solve the trigonometric equation.
$2 \tan ^{2} \theta=\tan \theta+1 \mathrm{O} \leq \theta \leq 360^{\circ}$
[5 Marks]
e) Given $\mathrm{A}=(\mathrm{b}, \mathrm{c}, \mathrm{d})$
$B=(c, d, e, f)$
$\mathrm{C}=(\mathrm{d}, \mathrm{g}, \mathrm{h})$
$\mathrm{U}=(\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i})$

Find (i) AUBUC
(ii) $(\mathrm{AUB})^{\mathrm{C}}$
[1 Mark]
[1 Mark]

