MATH 0121

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN

MATH 0121: INTRODUCTORY MATHEMATICS

STREAMS: Y2 S2

TIME: 2 HOURS

11.30 A.M – 1.30 P.M.

DAY/DATE: THURSDAY 9/04/2020

INSTRUCTIONS

- Answer **ALL** questions in **Section A** and any other **TWO** in Section B.
- Do not write anything on the question paper
- Non –programmable electronic calculators may be used

SECTION A

QUESTION ONE [30 MARKS]

(a) State the properties of real numbers in the equations below.		[4 Marks]
/	4(5+6) = 20 + 24 7+6 = 6+7 5x1 = 5 5 = 5+0	
 b) Classify each of the following numbers. i) 3 ii) 4.632 iii) -2 + 3i 		[3 Marks]
c) Find the modulus given $z = 2 + 3i$		[2 Marks]
d) Show that AUB =BUA		[5 Marks]

e) Use the following piecewise functions to evaluate for the given values of x.

f	(x) $\begin{cases} -x^2 + 2 \\ 2x + 1 \\ x^2 + 2 \end{cases}$ for	x <-2 or $-2 \le x < 0$ $x \ge 0$	
i)	f (5)		[2 Marks]
ii)	f (5) f (-4)		[2Marks]
;;;)	f (-2)		[2 Mortes]
111)	1 (-2)		[2 Marks]
Write down the series		$\sum_{j=-1}^{s} 2^{i}$ in full and evaluate it.	[2 Marks]

g) In how many ways can the letters of word CELEBRATION be arranged in order for the vowels to come together. [3 Marks]

h) In an AP of 25 terms, the 4th term is 4 and the 22nd term is 5. Find the sum of the AP. [5 Marks]

QUESTION TWO [20 MARKS]

a) Use long division method to obtain the quotient when

$$4x^4 + 2x^3 - 7x^2 + x - 3$$
 is divided by x-2 [5 Marks]

b) Given f(x) = 3x - 1h(x) = 2x + 2

f)

Show that in general foh $(x) \neq hof (x)$ [5 Marks]

- c) The first term of a sequence is 6. Each term is thrice the term before. Write down the first five terms of the sequence. [4 Marks]
- d) Given $\theta_1 = -2 3i$ $\theta_2 = 6 + 2i$ Evaluate i) $\theta_2 \ \theta_1$ [2 Marks] ii) $\frac{\theta_1}{\theta_2}$ [4 Marks]

QUESTION THREE [20 MARKS]

a) Expand $(-3x + 2y)^7$	[5 Marks]
b) Given that $f(x) = x-2$ and $g(x) = 3x^2 + 1$. Evaluate	
 i) fog (2) ii) gof (3) ii) fof (x) 	[2 Marks] [2 Marks] [2 Marks]
c) Solve for n in $n C_2 = 28$	[5 Marks]

d) Using examples justify the following statements.

All natural numbers are intergers but all intergers are not natural numbers.
 [2 Marks]

ii) All intergers are rational numbers. [2 Marks]

QUESTION FOUR [20 MARKS]

- a) Given f(x) = 2x + 1 [2 Marks] g(x) = -3 - 4x
- Find (i) f(x) + g(x) [2 Marks]

(ii)
$$g(x) - f(x)$$
 [2 Marks]

(b) Simplify
$$\frac{\cos^2\theta}{1+\sin\theta} + \frac{\cos^2\theta}{1-\sin\theta}$$
 [5 Marks]

(c) An AP has the 2^{nd} term 5 and 5^{th} term 9. Find the first term and common difference.

[5 Marks]

(d) Prove analytically that
$$(AnB)n C = An (BnC)$$
 [6 Marks]

QUESTION FIVE [20 MARKS]

a) A school committee of 9 members is to be chosen from 8 parents and six teachers and the principal. How many ways can the committee be formed in order to include:

i)	The Principal	[1 Mark]
ii)	The Principal and five parents.	[2 Marks]

- b) The 2nd term of a GP is 2 and 4th term is 18. Find the possible values of the common ratio and the corresponding first terms. [5 Marks]
- c) Construct the truth table to verify if the statements in (PVQ) and $\sim P^{\wedge} \sim Q$ are equivalent. [5 Marks]
- d) Solve the trigonometric equation. $2 \tan^2 \theta = \tan \theta + 1 \ O \le \theta \le 360^0$
- e) Given A= (b, c, d) B = (c, d, e, f) C= (d, g, h) U = (a,b,c,d,e,f,g,h,i)

Find (i) AUBUC

(ii) (AUB) ^C

[1 Mark]

[1 Mark]

[5 Marks]