MATH 101

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BED SCIENCE, BSC CHEMISTRY, BSC BIOLOGY.

MATH 101: FOUNDATION MATHEMATICS

STREAMS: AS ABOVE

TIME: 2 HOURS

2.30 P.M - 4.30 P.M.

DAY/DATE: MONDAY 14/12/2020

INSTRUCTIONS:

- Answer question **ONE**(**COMPULSORY**)and **TWO** other questions.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer.
- *** Do not** write on the question paper.
- * This is a **closed book exam**, No reference materials are allowed in the examination room.
- * There will be **No** use of mobile phones or any other unauthorized materials.
- ✤ Write your answers legibly and use your time wisely.

QUESTION ONE: (30 MARKS)

(a) Solve the following equation $\frac{1}{3}(3m-6) + \frac{1}{4}(5m+4) + \frac{1}{5}(2m-9) = -3$ (2 marks)

(b) Simplify:
$$\frac{9x^2-1}{3x^2+2x-1}$$
 (2 marks)

(c) Find the standard deviation of the following data (3 marks) 15, 11,8,12,10,8,11,15

(d) Find
$$\frac{dy}{dx}$$
 for $y = \sqrt{x} + \frac{2}{x^2}$ (2 marks)

MATH 101

(e) Divide
$$6x^2 - 26x + 12$$
 by $x - 4$. (3 marks)

(f) Express
$$log\left(\frac{x^3y^2}{\sqrt{z^3}}\right)$$
 in terms of m, n and p given that $\log x = m$, $\log y = n$ and $\log z = p$.

(g) Evaluate
$$\frac{\sqrt{14}}{\sqrt{7}-\sqrt{2}} - \frac{\sqrt{14}}{\sqrt{7}+\sqrt{2}}$$
 by rationalizing the denominator (3 marks)

(h) Work out
$$\int \left(\frac{2x^3 - 3x}{4x}\right) dx$$
 (3 marks)

- (i) Combine $3 \ln s + \frac{1}{2} \ln t 4 \ln(t^2 + 1)$ into a single logarithm (2 marks)
- (j) Determine the 19th term of an AP given that the 6th term is 17 and the 13th term is 38. (3 marks)

(k) Work
$$out({}^{4}P_{2}) (5 + 3x) {5 \choose 2} = 1140$$
 (2 marks)

(1) Determine the coordinates of the centre and the radius of the circle given by the equation

$$x^2 + y^2 + 8x - 2y + 8 = 0 (3 marks)$$

QUESTION TWO: (20 MARKS)

- (a) Using the first principle, differentiate $y = x^2 + 5$ (4 marks)
- (b) The expression $x^3 + kx^2 2x 4$, is divisible by (x +1)
 - (i) Find the value of k (3 marks)
 - (ii) Use the long division method to confirm this result. Hence, solve the equation

$$x^{3} + kx^{2} - 2x - 4 = 0$$
 (with the value of k in (i) above). (5 marks)

- (c) A line Q passes through point (3, 1) and is perpendicular to the line 2y = 4x + 5. Determine the equation of the line Q. (2 marks)
- (d) Solve $2x^2 + 5x = 3$ by completing the square method. (3 marks)

MATH 101

(e) Given the polynomial, $P(x) = 2x^3 - 3x^2 - 7x - 6$. Find (3 marks)

(i) P(-1)

- (ii) P(3)
- (iii) P(1)

QUESTION THREE: (20 MARKS)

- (a) Evaluate $\int_{-2}^{3} (4 x^2) dx$ (3 marks)
- (b) Work out the derivative of $y = \frac{2}{5}x^3 \frac{4}{x^3} + \sqrt[4]{x^5} + 7$ (3 marks)

(c) (i) Find the equation of the tangent and normal to the curve $y = \frac{4}{x}$ at x = 1. (5 marks)

(iii)Find and classify the turning points of the curve represented by $y = x^3 + 3x^2 - 9x - 4$ (6 marks) (iv) Hence sketch the curve $y = x^3 + 3x^2 - 9x - 4$ (3 marks)

QUESTION FOUR: (20 MARKS)

(a) The data below represent masses to the nearest kilogram of fish caught in a day.

Masses	5 - 9	10 - 14	15 - 19	20 - 24	25 - 29
No. of fish	5	20	10	10	5

Determine:

(i)	Mode	(1 mark)
(ii)	Mean	(3 marks)
(iii)	Median	(3 marks)
(iv)	Standard deviation	(3 marks)
(v)	80 th Percentile	(3 marks)
(vi)	Semi – interquartile range	(3 marks)

- (b) A batch of 40 components contains 5 which are defective. If a component is drawn at random from the batch and tested and then a second is drawn at random, calculate the probability of having one defective component, both:
 - (i) With replacement (2 marks)
 - (ii) Without replacement (2 marks)

QUESTION FIVE: (20 MARKS)

- (a) Solve the following equation $\log_2(x+3) 3 = \log_2(x-5)$ (2 marks)
- (b) The angle of depression of a ship viewed at a particular instant from the top of a 75m vertical cliff is 30°. Find the distance of the ship from instant and after 1 minute if its angle of depression of its new position is 20°. (3 marks)
- (c) Differentiate the following using the indicated technique $y = (4x 1)^3$ (chain rule)

(3 marks)

(d) Find the gradient of the curve
$$y = \frac{x^2+2}{x-5}$$
, at the point x = 1 (3 marks)

- (e) Simplify $(a^3)(\sqrt{b})(\sqrt{c^5})(\sqrt{a^3})(\sqrt{b^{2}}(c^3))$ and hence evaluate where $a = \frac{1}{4}$, b = 6 and c = 1 (3 marks)
- (f) Factorize the expression $3x^2 + 5x + 0.75$ (3 marks)
- (g) If $f(x) = ax + \frac{b}{x}$ and if f(2) = 9 and f(3) = 16, evaluate a, b and find the value of x which f(x) = 0 (3 mks)

.....