

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BED SCIENCE, BSC CHEMISTRY, BSC BIOLOGY.

MATH 101: FOUNDATION MATHEMATICS

STREAMS: AS ABOVE
TIME: 2 HOURS

DAY/DATE: MONDAY 14/12/2020
2.30 P.M - 4.30 P.M.

INSTRUCTIONS:

* Answer question ONE(COMPULSORY) and TWO other questions.
* Sketch maps and diagrams may be used whenever they help to illustrate your answer.
* Do not write on the question paper.
* This is a closed book exam, No reference materials are allowed in the examination room.
* There will be No use of mobile phones or any other unauthorized materials.
* Write your answers legibly and use your time wisely.

QUESTION ONE: (30 MARKS)
(a) Solve the following equation $\frac{1}{3}(3 m-6)+\frac{1}{4}(5 m+4)+\frac{1}{5}(2 m-9)=-3 \quad(2$ marks $)$
(b) Simplify : $\frac{9 x^{2}-1}{3 x^{2}+2 x-1}$
(c) Find the standard deviation of the following data
$15,11,8,12,10,8,11,15$
(d) Find $\frac{d y}{d x}$ for $y=\sqrt{x}+\frac{2}{x^{2}}$
(e) Divide $6 x^{2}-26 x+12$ by $x-4$.
(f) Express $\log \left(\frac{x^{3} y^{2}}{\sqrt{z^{3}}}\right)$ in terms of m, n and p given that $\log \mathrm{x}=\mathrm{m}, \log \mathrm{y}=\mathrm{n}$ and $\log \mathrm{z}=$ p.
(g) Evaluate $\frac{\sqrt{14}}{\sqrt{7}-\sqrt{2}}-\frac{\sqrt{14}}{\sqrt{7}+\sqrt{2}}$ by rationalizing the denominator
(h) Work out $\int\left(\frac{2 x^{3}-3 x}{4 x}\right) \mathrm{dx}$
(i) Combine $3 \ln s+1 / 2 \ln t-4 \ln \left(t^{2}+1\right)$ into a single logarithm
(j) Determine the $19^{\text {th }}$ term of an AP given that the $6^{\text {th }}$ term is 17 and the $13^{\text {th }}$ term is 38 .
(k) $\operatorname{Work} \operatorname{out}\left({ }^{4} \mathrm{P}_{2}\right)(5+3 \mathrm{x})\binom{5}{2}=1140$
(l) Determine the coordinates of the centre and the radius of the circle given by the equation

$$
\begin{equation*}
x^{2}+y^{2}+8 x-2 y+8=0 \tag{3marks}
\end{equation*}
$$

QUESTION TWO: (20 MARKS)

(a) Using the first principle, differentiate $y=x^{2}+5$
(4 marks)
(b) The expression $x^{3}+k x^{2}-2 x-4$, is divisible by $(x+1)$
(i) Find the value of k
(ii) Use the long division method to confirm this result. Hence, solve the equation

$$
\begin{equation*}
x^{3}+k x^{2}-2 x-4=0 \text { (with the value of } \mathrm{k} \text { in (i) above). } \tag{5marks}
\end{equation*}
$$

(c) A line Q passes through point $(3,1)$ and is perpendicular to the line $2 y=4 x+5$.

Determine the equation of the line Q .
(2 marks)
(d) Solve $2 x^{2}+5 x=3$ by completing the square method.
(e) Given the polynomial, $P(x)=2 x^{3}-3 x^{2}-7 x-6$. Find
(i) $\mathrm{P}(-1)$
(ii) $\mathrm{P}(3)$
(iii) $\mathrm{P}(1)$

QUESTION THREE: (20 MARKS)
(a) Evaluate $\int_{-2}^{3}\left(4-x^{2}\right) d x$
(b) Work out the derivative of $y=\frac{2}{5} x^{3}-\frac{4}{x^{3}}+\sqrt[4]{x^{5}}+7$
(c) (i) Find the equation of the tangent and normal to the curve $y=\frac{4}{x}$ at $\mathrm{x}=1$.
(iii)Find and classify the turning points of the curve represented by $y=x^{3}+$ $3 x^{2}-9 x-4$ (6 marks)
(iv) Hence sketch the curve $y=x^{3}+3 x^{2}-9 x-4$
(3 marks)

QUESTION FOUR: (20 MARKS)

(a) The data below represent masses to the nearest kilogram of fish caught in a day.

Masses	$5-9$	$10-14$	$15-19$	$20-24$	$25-29$
No. of fish	5	20	10	10	5

Determine:
(i) Mode (1 mark)
(ii) Mean
(iii) Median
(3 marks)
(iv) Standard deviation
(3 marks)
(v) $80^{\text {th }}$ Percentile (3 marks)
(vi) Semi - interquartile range
(b) A batch of 40 components contains 5 which are defective. If a component is drawn at random from the batch and tested and then a second is drawn at random, calculate the probability of having one defective component, both:
(i) With replacement
(ii) Without replacement

QUESTION FIVE: (20 MARKS)

(a) Solve the following equation $\log _{2}(x+3)-3=\log _{2}(x-5)$
(b) The angle of depression of a ship viewed at a particular instant from the top of a 75 m vertical cliff is 30°. Find the distance of the ship from instant and after 1 minute if its angle of depression of its new position is 20°.
(c) Differentiate the following using the indicated technique $y=(4 x-1)^{3}$ (chain rule)
(d) Find the gradient of the curve $y=\frac{x^{2}+2}{x-5}$, at the point $\mathrm{x}=1$ (3 marks)
(e) Simplify $\left(a^{3}\right)(\sqrt{b})\left(\sqrt{c^{5}}\right)\left(\sqrt{a^{3}}\right)\left(\sqrt{b^{2}}\left(c^{3}\right)\right.$ and hence evaluate where $\mathrm{a}=\frac{1}{4}, \mathrm{~b}=$ 6 and $\mathrm{c}=1$ (3 marks)
(f) Factorize the expression $3 x^{2}+5 x+0.75$ (3 marks)
(g) If $f(x)=a x+\frac{b}{x}$ and if $\mathrm{f}(2)=9$ and $\mathrm{f}(3)=16$, evaluate a, b and find the value of x which $f(x)=0$

