

MATH 101: FOUNDATION MATHEMATICS
STREAMS:
TIME: 2 HOURS

DAY/DATE: MONDAY 16/11/2020
5.00 P.M - 7.00 P.M.

INSTRUCTIONS:
Answer All Questions.

QUESTIONS ONE: 30 MARKS

(a) Evaluate $\frac{3+\sqrt{5^{2}-3^{2}}+2^{3}}{1+(4 \times 6) \div(3 \times 4)}+\frac{15 \div 3+2 \times 7-1}{3 \times \sqrt{4}+8-3^{2}+1}$
(b) Solve the equation $4(2 r-3)-2(r-4)=3(r-3)-1$
(c) Solve simultaneously $\frac{1}{2 a}+\frac{3}{5 b}=4$

$$
\frac{4}{a}+\frac{1}{2 b}=10.5
$$

(d) Solve $2 x^{2}+9 x+8=0$ to three significant figures, by completing square method. (3 marks)
(e) Use the properties of logarithms to solve $\log _{2}\left(\mathrm{x}^{2}-6 \mathrm{x}\right)=3+\log _{2}(1-\mathrm{x})$ for x :
(3marks)
(f) $\operatorname{Work} \operatorname{out}\left({ }^{4} \mathrm{P}_{2}\right)(5+3 \mathrm{x})\binom{5}{2}=1140$ (3marks)
(g) a)Write down the first five terms of the expansion of $\left(1-\frac{x}{3}\right)^{5}$
b) Using the first three terms of the expansion. Find the values of $(1.01)^{5}$ to 4 dp . (2marks)
(h) Find the radius and the co-ordinates of the centre of a circle whose equation is $\frac{1}{2} x^{2}+\frac{1}{2} y^{2}-3 x+4 y+6 \frac{3}{8}=0$
(i) Find the differential coefficient using the method indicated in the bracket
(i) $\quad y=\frac{2}{5} x^{3}-\frac{4}{x^{3}}+\sqrt[4]{x^{5}}+7$ (Power rule)
(ii) $y=\frac{2}{(2 t-5)^{4}}$
(Chain rule)

QUESTIONS TWO: 20 MARKS
(a) Work out
(6 marks)
(i) $\quad \sum_{i=1}^{35}(-45+5 i)$
(ii) $\quad \sum_{n=0}^{20} 4(0.6)^{n}$
(b) Evaluate $\frac{\sqrt{14}}{\sqrt{7}-\sqrt{2}}-\frac{\sqrt{14}}{\sqrt{7}+\sqrt{2}}$ by rationalizing the denominator
(c) Work out $\int\left(\frac{2 x^{3}-3 x}{4 x}\right) \mathrm{dx}$
(d) Given the polynomial, $P(x)=2 x^{3}-3 x^{2}-7 x-6$. Find
(i) $\mathrm{P}(-2)$
(ii) $\mathrm{P}(1)$
(iii) $\mathrm{P}(-3)$
(e) The data below represent masses to the nearest kilogram of fish caught in a day.

Masses	$5-9$	$10-14$	$15-19$	$20-24$	$25-29$
No. of fish	5	20	10	10	5

Determine:
(i) Mean
(ii) Standard deviation
(a) Divide using long division. State the quotient, $\mathrm{q}(x)$, and use remainder theorem to find, $\mathrm{r}(x)$.

$$
\left(6 x^{3}+17 x^{2}+27 x+20\right) \div(3 x+4) \quad \text { (5 marks) }
$$

(b) (i) Find the equation of the tangent and normal to the curve $y=\frac{4}{x}$ at $\mathrm{x}=1$.
(i) Find and classify the turning points of the curve represented by $y=x^{3}+$ $3 x^{2}-9 x-4$ (6 marks)
(ii) Hence sketch the curve $y=x^{3}+3 x^{2}-9 x-4$
(4 marks)
\qquad

