EENG 292

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

EENG 292: PHYSICAL ELECTRONICS II

STREAMS:

TIME: 2 HOURS

8.30 A.M. – 10.30 A.M.

DAY/DATE: WEDNESDAY 08/04/2020

INSTRUCTIONS:

1.	(a)	What is a Schottky Diode?	(1 mark)
	(b)	Systems using high-concentration photovoltaic (HCPV) have the become competitive in the near future. Explain.	potential to (2 marks)
	(c)	A 430-nm violent light is incident on a calcium photo electrode w function of 2.71 eV. Find the energy of the incident photons and kinetic energy of ejected electrons.	ith a work the maximum (4 marks)
	(d)	Imagine a normal incidence light is passing into a diamond crystal of refraction $n = 2.41$. Find the percentage of light that is reflected	having an index d. (3 marks)
	(e)	State the advantage and disadvantages of avalanche photodiode.	(3 marks)
	(f)	Discuss the Unique Characteristics of the beam of Laser Light pro Laser diode.	oduced by the (4 marks)
	(g)	List and explain performance parameters of a photodiode.	(3 marks)
	(h)	Explain the operation of a MESFET both in <i>Enhancement mode a mode</i> .	nd Depletion (5 marks)
	(i)	List and explain five application of LEDs.	(5 marks)
2.	(a)	The metal-semiconductor (MS) contact is an important component in the performance of most semiconductor devices in the solid state.	

- (i) Show the equilibrium energy band diagram for a metal to an p-type semiconductor where (4 marks)
 - (a) $\Phi_m < \Phi_s and$
 - (b) $\Phi_m < \Phi_s$
- (ii) Find the expression of the barrier height Φ_B of the rectifying p-type contact. (4 marks)
- (iii) When a MS contact is formed for $\Phi_m = \chi$, under what conditions will the contact behaves as the Ohmic contact, and under what conditions will the contact behaves as the rectifying?

(b)	Discuss the principle of operation and design of a QDIP.	(7 marks)
(c)	What is the minimum wavelength absorbed by Ge, for which E_q =	= 0.67 eV?

- (3 marks)
- 3. (a) With the aid of a well labelled diagrams explain the operation of Schottky Diode. (8 marks)
 - (b) Briefly describe how a High Electron Mobility Transistor (HEMT) operate. (4 marks)
 - (c) Discuss four types of Thin-Film solar cells that are commercially used in several technologies. (8 marks)
- 4. (a) Using a figure for illustrate explain the operation of a PIN photodiode. (10 marks)
 - (b) The Schottky photodiode is unique as a photodetector as it is able to operate in two photo-detection modes. Explain. (4 marks)
 - (c) State three Applications of HEMT. (3 marks)
 - (d) Why is Quantum well infrared photodetector (QWIP) important? (3 marks)
- 5. (a) Explain the working of a photo-detector and give example of photodetectors. (5 marks)
 - (b) State and describe at least 3 types of semiconductor laser. (3 marks)
 - (c) With the help of a well labelled diagram explain the principles of photoelectric emission in semi-conductors. (6 marks)
 - (d) With a well labelled diagram discuss the construction of a LED. (6 marks)