CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE COMPUTER SCIENCE / BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

RESIT / SPECIAL EXAMINATION

COSC 340: THEORY OF COMPUTATION

STREAMS: BSC COMP.SCI/ BSC APPLIED COMP. SCI TIME: 2 HOURS

DAY/DATE: MONDAY 16/11/2020

11.30 A.M. – 1.30 P.M.

INSTRUCTIONS:

- Answer Question **ONE** and any other **TWO** questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**, No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

SECTION A

ANSWER <u>ALL</u> QUESTIONS IN THIS SECTION

QUESTION ONE [30 MARKS]

- a) Identify and explain any three areas in Computer Science that benefit from Context Free Grammars [6 Marks]
- b) Using appropriate diagrams, differentiate between Deterministic Finite Automaton and Non Deterministic Finite Automaton [6 Marks]
- c) Describe the seven components that are used to formally describe a Turing Machine [3 marks]
- d) Giving an example for each differentiate between a set and a tuple [4 Marks]

COSC 340

- e) Present the symbol of Start and Final States of DFAs. Explain the role of the start and final states of a DFA [6 Marks]
- f) Discuss the Church-Turing thesis

SECTION B

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO [20 MARKS]

a) Assume we have two regular languages L (A) = {boy, girl} and L (B) = {good, bad}. Show the results of the regular operations below on the two languages:

i.	Conjunction of	Language L(A)	and Language	e L(B)	[2 Marks]
----	----------------	---------------	--------------	--------	-----------

- ii. Star of Language L(B) [2 Marks]
- b) Describe the relationship between a computer virus and the theory of computability [7 Marks]
- c) For each of the following languages, construct a DFA that accepts the language. In all cases, the alphabet is {0, 1}.

i.	{ w the length of w is divisible by three }	[3 Marks]
ii.	{ w 110 is not a substring of w}	[3 Marks]
iii.	{ w w contains at least five 1s}	[3 Marks]

[5 Marks]

QUESTION THREE [20 MARKS]

a) A pushdown Automata PDA P is presented as follows:

Making reference to the Push Down Automaton above:

- a) Define the language accepted by PDA P [4 Marks]
- b) Discuss the computation of PDA P [10 Marks]
- c) Let B be the set of all infinite sequences over {0, 1}. Show that B is uncountable, using a proof by diagonalization. [6 Marks]

QUESTION FOUR [20 MARKS]

a) Explain the relationship between cryptography and the theory of complexity

[4 Marks]

b) Compare and contrast Push Down Automata to the following computation models:

i.	DFA	[2 Marks]
ii.	NFA	[2 Marks]
iii.	Turing Machines	[2 Marks]

c) Consider the context-free grammar $G = (V, \Sigma, R, A)$, where $V = \{A, B\}, \Sigma = \{0, 1\}$, A is the start variable, and R consists of the rules

$$A \rightarrow BAB|B| \in$$

 $B \rightarrow 00 | \in$

Convert this grammar to a Context-Free Grammar in Chomsky Normal Form whose language is the same as that of G. [10 Marks]

QUESTION FIVE [20 MARKS]

b)

a) An Automatic door is one real life implementation of Finite Automaton computational model.

i.	Explain the workings of an Automatic door	[2 Marks]
ii.	Present the State diagram of such an Automatic door	[3 Marks]
iii.	Formally define the State diagram of the Automatic door	[5 Marks]
Expla profes	in how you would apply knowledge in the following to your cossion:	mputing
i.	Regular Expressions	[3 Marks]
ii.	Finite Automaton	[2 Marks]
iii.	Pumping Lemma	[2 Marks]
•		

iv. Kleene's theorem [3 Marks]
