CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE, BACHELOR OF SCIENCE IN APPLIED COMPUTER SCIENCE

COSC 333: DESIGN AND ANALYSIS OF ALGORITHMS

STREAMS:BSC (COSC, ACSC) Y3S2 TIME: 2 HOURS

DAY/DATE: WEDNESDAY03/02/2021 8.30 AM – 10.30 AM

INSTRUCTIONS:

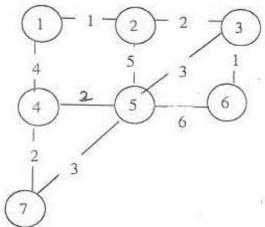
- Answer Question **ONE** and any other **TWO** questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a **closed book exam**. No reference materials are allowed in the examination room
- There will be **No** use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely
- Electronic, non-programmable calculators may be used

SECTION A: COMPULSORY

QUESTIO	N ONE[30marks]	
а.	Do as directed.	_
	1. Explain Asymptotic Notation.	[3mks]
	2. Explain limit rules.	[2mks]
	3. What is maximum rule? Give One Example.	[1mk]
b.	Explain Devide and Conquer Technic for multiplying two large intergers.	[3mks]
C.	Explain quick sort algorithm with example.	[3mks]
d.	Explain Binary search algorithm and derive it's time complexity.	[3mks]
e.	Explain sequential Exponential algorithm(exposeq()) and Exponatial with devide and conquer technic(expoDC()). Also derive it's time complexity.	[6mks]

f. Find the minimum spanning tree for the graph shown below using prim's algorithm

[6mks]



	g. Explain characteristics of Greedy algorithm	[3mks]

SECTION B: (CHOOSE ONLY TWO QUESTIONS FROM THIS SECTION)

QUESTION TWO:

a. Find the minimum spanning tree for graph shown bellow using Kruskal's and Prim's algorithm [10mks]

b. Solve the following knapsack problem using the Greedy algorithm [10 mks]

w	10	20	30	40	50
V	20	30	66	40	60

Weighting carrying capacity of the knapsack(W) is 100 Number of object (n) is 5.

QUESTION THREE 20 MKS

a. What is back tracking? Explain with example. [6mks]

b. Explain scheduling with deadline. [4mks]

c. Explain: Depth first search algorithm with undirected graph [4mks]

d. Explain Merge sort algorithm and describe its time complexity.[6mks]

QUESTION FOUR 20 MKS

a. Explain the following terms

[6mks]

- 1) P class
- 2) NP Class
- 3)NPC Class
- b. What is the basic difference between divide and conquer and dynamic programming? What is the basic approach in solving the problem using Dynamic programming? [10mks]
- c. Write down the characteristics of greedy algorithms. [4mks]

QUESTION 5 [20 MKS]

With the use of dynamic programming, find the Longest common subsequence for the sequences $X = \{BACDB\}$ and $Y = \{BCDB\}$, Use tables to illustrate your workings and how you achieve the final answer[20mks]
