COSC 0172

CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN COMPUTER

COSC 0172: MATHEMATICS AND COMPUTING II

STREAMS: DIP. COMP

DAY/DATE: MONDAY 06/04/2020

Instructions:

- Answer ALL questions in section A and any other TWO in section B
- Do not write anything on the question paper
- Non-programmable electronic calculators may be used

SECTION A

QUESTION ONE (30 MARKS)

(a)	State the properties of good measure of central tendencies	[5 marks]
(b)	Given $A = \begin{bmatrix} 4 & 1 & 8 \\ -2 & 4 & 2 \\ 3 & 4 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 3 \\ 1 & 0 & 1 \\ 1 & 1 & 3 \end{bmatrix}$, find	
	A^{-1} , B^{-1} and AB	[11 marks]

The mean of the data below is 2.5. Find the missing value and determine the standard (c) deviation [5 marks]

Х	2.0	2.2	2.3	2.8	3.0
f	2	4	У	3	5

- (d) Solve for x in the linear inequality and state its property 2(4X + 2) - 20 > 8(2x - 3)
- If we have 12 soft-centered and 8 hard centered chocolates in a box, draw a tree diagram (e) and use it to find
 - *P*(*soft centred and soft centered*) [2 marks] (i)
 - *P*(*hard centred and soft centered or centered hard centered*) (ii)

[2 marks]

TIME: 2 HOURS

11.30 A.M. – 1.30 P.M.

UNIVERSITY

[3 marks]

SECTION B

QUESTION TWO (20 MARKS)

- (a) State three advantages and three elements of arithmetic mean [6 marks]
- (b) Use the data given to find D_7 , P_{69} , mean, median, semi-interquartile, MAD and standard deviation [14 marks]

~	_
Class interval	F
0-9	5
	-
10 – 19	8
	-
20 - 29	7
	-
30 - 39	12
00 07	
40 - 49	28
	20
50 - 59	20
50 57	20
60 - 69	15
00 07	15
70 - 79	5
10 12	5

QUESTION THREE (20 MARKS)

(a) The question do you "pray?" was asked of 100 people and the results were as shown in the table

Respondents	Yes	No	Total
Male	17	40	57
Female	14	29	43
Total	31	69	100

- (i) What is the probability of randomly selecting an individual being a male who pray? [2 marks]
- (ii) What is the probability of randomly selecting an individual being a female who don't pray? [2 marks]
- (iii) What is the probability of selecting an individual who don't pray? [2 marks]
- (iv) What is the probability of selecting a male or female who pray? [2 marks]
- (v) What is the probability of randomly selecting a female who pray? [2 marks]

(b) Solve the following inequalities graphically and identify the unwanted regions [10 marks]

 $2x \le y + 6$ $x + y \le 4$ $y \ge x + 9$ $0.5x \le 2y + 4$ y > 3 $x \le 9$

QUESTION FOUR (20 MARKS)

- (a) Using a graph solve the following equation and find the coefficient of x [10 marks] $x^4 - 13x^2 + 36$
- (b) Show that (x + 3) is a factor of $x^3 + 6x^2 x 30$. Then find the remaining factors of the polynomial [6 marks]
- (c) Define the following terms as used in probability
 - (i) Classical probability [2 marks]
 - (ii) Empirical probability [2 marks]

[3 marks]

[5 marks]

[7 marks]

QUESTION FIVE (20 MARKS)

(a) Given
$$A = \begin{bmatrix} 0 & -1 & 2 \\ 1 & -1 & -2 \\ -2 & 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 11 & 5 \\ 1 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$

Find AB

(b) Hence, solve the simultaneous equations

```
4x + 11y + 5z = 2x + 4y + 2z = 1x + 2y + z = 4
```

(c) For the following read estate prices, calculate semi-interquartile range [5 marks]
389950, 230500, 479000, 114950, 5500000, 387000, 659000, 575000, 488800, 1095000

(d) Find the mean and the standard deviation of the data

Class interval	F
0 - 2	1
3-5	6
6-8	10
9 – 11	7
12 - 14	0
15 – 17	2