CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE, BACHELOR OF SCIENCE, BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

COSC 102: DISCRETE STRUCTURES

STREAMS: BSC (COMP SCIE)
TIME: 2 HOURS
DAY/DATE: MONDAY 06/04/2020
11.30 AM - 1.30 PM

INSTRUCTIONS:

- Answer QUESTION 1 and any other TWO QUESTIONS from section B.
- This is a CLOSED BOOK EXAM, No reference materials allowed in examination room. No use of mobile phones not allowed.
- Do not write on this question paper
- Write your answers legibly and use your time wisely.
- Scientific, non-programable Calculators may be used.

SECTION A: COMPULSORY

QUESTION $1[30 M K S]$
a) What is a proposition? Give examples [4mks]
b) Explain the type of problems that can be solved in Discrete math.
c) State the Converse, the inverse and the Contrapositive of the following conditional statement:
"The home team wins, wherever it is raining"
[4mks]
d) Construct the Truth table of the following compound proposition $(\mathrm{pv}-\mathrm{q}) \longrightarrow(\mathrm{p} \wedge q)$ [6mks]
e) Given that variable names in a programming language can be either a single uppercase letter or an uppercase letter followed by a digit, find the number of possible variable names
f) The members of the set $S=\{x \mid x$ is the square of an integer and $x<100\}$ list the members.
[4mks]
g) Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists. Find the number of students:
(i). Only on list A, (ii) only on list B, (iii) on list A or B (or both), (iv) on exactly one list.

SECTION B: ATTEMPT ONLY TWO QUESTIONS FROM THIS SECTION

Question 2 [20mks]

a) Let A, B and C be sets. Prove or disprove (with a counter example) each of the following:
(i) If $A / C=B / C$ then $A=B$
(ii) If $[(A \cap C=B \cap C) \&(A / C=B / C)$ then $A=B$
(ii) If $[(A \cup C=B \cup C) \&(A / C=B / C)$ then $A=B$.
b) With the use of direct proof or otherwise, prove the following:
(i). The square of an even natural number is even
(ii).The square of an odd natural number is odd
[4mks]
(iii). The claim that if n is a positive integer, then the quantity $\mathbf{n}^{\mathbf{2}} \mathbf{+} \mathbf{3 n} \mathbf{+ 2}$ is even
c) With the use of relevant examples, discuss proof by induction

Question 3[20mks]

(a) Find the number of permutations of six objects, $\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}\}$ taking three at a time
[4mks]
(b) Prove by direct proof or otherwise, that the sum of two odd numbers is even. [4mks]
(c) A farmer buys 3 cows, 2 pigs and 4 hens from a man who has 6 cows, 5 pigs, and 8 hens. Find the number of choices the farmer has to make

Question 4[20mks]

(a) Let M, P and C be the sets of students taking Mathematics, Physics and Computer courses respectively in Chuka University. Take $|\mathrm{M}|=300, \quad|\mathrm{P}|=350,|\mathrm{C}|=450,|\mathrm{M} \cap \mathrm{P}|=$ $100,|\mathrm{M} \cap \mathrm{C}|=150$, and $|\mathrm{P} \cap \mathrm{C}|=75,|\mathrm{M} \cap \mathrm{N} \cap \mathrm{P} \cap \mathrm{C}|=10$. Determine the number of students taking exactly one of the above courses.
[6mks]
(b) How many ways are there to select five players from a 10-member tennis team to make a trip to a match at another school?
(c) What is the minimum number of students required in a discrete mathematics class to be sure that at least six will receive the same grade, if there are five possible grades, A, B, C, D , and F ?
(d) An highland has two kinds of inhabitants, knights and knaves. Knights always tell the truth, and only the truth; Knaves always tell lies, and only lies. John encountered two people on his visit to the highland, A and B. Determine what is A and B if A tells John " B is a Knight" and B "says The two of us are of opposite type"

Question 5 [20mks]

(a) Find the number M of seven letter words that can be formed using the word "BENZENE".
(b) Use Binomial theorem to Determine the coefficient of $x^{12} y^{13}$ in the expansion of $(x+y)^{25}$
[4mks]
(c) Determine the expansion of $(x+y)^{4}$ using Binomial theorem
(d) State the pigeonhole principle.

