CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF MASTERS IN AGRICULTURAL ECONOMICS

AGEC 854: MATHEMATICS FOR ECONOMICSTS

STREAMS: MSC (AGEC)
TIME: 3 HOURS
DAY/DATE: TUESDAY 14/04/2020
11.30 AM - 2.30 PM

INSTRUCTIONS:

- Do not write on the question paper
- Answer question One and any other Three questions
- Show your working clearly and use diagrams and charts as necessary

Question One

(i) Solve the following LP problem using simplex method Maximize $P=x+2 y+3 z$ subject to the constraint
$7 x+z \leq 6$
$x+2 y \leq 20$
$3 y+4 z \leq 30$
Where x, y and z are non-negative
(ii) Determine the following partial derivatives
(a) Given $f=(x, y)=3^{x}+3 x y^{2}$, find $f_{y}(x, y)$ and $f_{x x}(x, y)$
(b) Given $f(x, y, z)=x^{2} y e^{3 z}$, evaluate $f_{x y}(1,1,0)$ and $f_{y z x}(1,1,0)$
(c) If $z e^{z}=x y+y^{x}$, determine $\frac{\partial z}{\partial x}$ and $\frac{\partial y}{\partial x}$
(iii) Evaluate the following integral
(a) $\int_{0}^{1}\left(2^{t}+t^{2}\right) d t$
(b) $\int_{0}^{4} \frac{\operatorname{In}(2 x+1)}{\sqrt{2 x+1}} d x$
(c) $\quad \int(\operatorname{In} y)^{2} d y$
(iv) In a certain country there are two daily newspapers: The Citizen and the Mirror. A researcher interested in the reading habit of this country found the following: of the readers who read Citizen on a given day 50% do so following day while the rest change to the Mirror. Of those who read Mirror on a given day 40% change to the Citizen the following day. Yesterday the readership levels were 30% citizen and 70% Mirror. Assume all conditions hold.

Required:
(a) Determine the readership levels of both dailies for today and tomorrow.
(b) If this process persists long enough, what will be the eventual readership?
[4 marks]

Question Two

Use Cramer's rule to solve the national - income model.

```
C=a+b(Y-T)
\(T=-t_{0}+t_{1} Y\)
\(Y=C+I_{0}+G\)

\section*{Question Three}

A society has three basic needs; food, shelter and clothing. There are thus three industries in the society _ the farming, housing and garment industries that produce these commodities. Each of these industries consumes a certain proportion of the total output of each commodity according to the following table.
\begin{tabular}{|l|l|l|l|l|}
\hline \multicolumn{2}{|c|}{} & \multicolumn{3}{c|}{ OUTPUT } \\
\cline { 3 - 6 } & Farming & Housing & Garment \\
\hline & Farming & 0.4 & 0.2 & 0.3 \\
\hline Consumption & Housing & 0.2 & 0.6 & 0.4 \\
\hline & Garment & 0.4 & 0.2 & 0.3 \\
\hline
\end{tabular}

Find the annual prices that each industry must charge for its income to equal its expenditure.
[15 marks]

\section*{Question Four}

Consider the following constrained maximization problem:
Maximize \(\operatorname{In}\left(\mathrm{X}_{1}+1\right)+\operatorname{In}\left(\mathrm{X}_{2}+1\right)\)
Subject to
\(p_{1} x_{1}+p_{2} x_{2} \leq m\)
\(x_{1} \geq 0, x_{2} \geq m\)
Where \(p_{1}>0, p_{2}>0\) and \(m>0\)
Where the Kuhn-Tucker first-order conditions for solving the optimization problem.
[15 marks]

\section*{Question Five}

A man always eats lunch at one of two restaurants, A and B . He never eats at A twice in a row. However, if he eats at B, he is three times as likely to eat at B next time as at A. Initially, he is equally likely to eat at either restaurant.
(a) What is the probability that he eat at A on the third day after the initial one?
(b) What proportion of his lunches does he eat at A?
[15 marks]```

