CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE

CHEM 438: HETEROCYCLIC CHEMISTRY

STREAMS: BSC TIME: 2 HOURS

DAY/DATE: WEDNESDAY 15/04/2020

8.30 A.M. – 10.30 A.M.

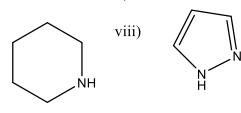
INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

iii)

QUESTION ONE (30 MARKS)

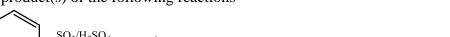
a) Name the following heterocyles

i) od ii)


iv)

V NH (4 marks)

vi)


vii)

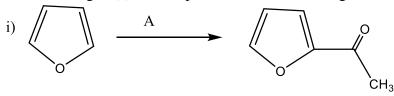
b) Draw the resonance structures of pyridine

(3 marks)

c) Give product(s) of the following reactions

(6 marks)

i)

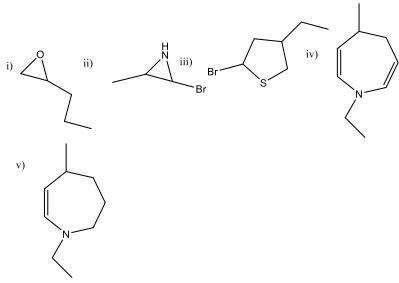

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

iv)
$$Ac_2O$$
, room temperature, 1 hr
 H_3PO_4

$$NaNH_2$$
 \rightarrow F

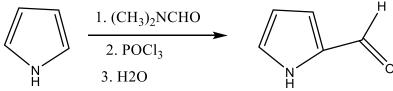
- d) Give two reasons why π -excessive ring systems undergo electrophilic reactions faster than benzene (4 marks)
- e) Write the mechanism of bromination of pyridine (6 marks)

- f) Using a diagram explain why the electrophilic aromatic substitution reaction of five membered aromatic heterocycles favours the α position than the β position (5 marks)
- g) Write the reagent(s) and the products in the following reaction (2 marks)



ii)
$$Cl_2$$
-40 degrees centigrade $A + B$

QUESTION TWO (20 MARKS)


a) Give the IUPAC names of the following structures

(5 marks)

b) Write the mechanism of the following reaction

(6 marks)

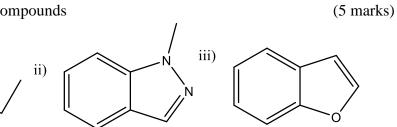
- c) Briefly explain why electrophilic substitution at carbon atoms of the pyridine is difficult
 - (4 marks)

d) Write the product(s) of the following reactions

(5 marks)

i)
$$\frac{\operatorname{Br}_2}{\operatorname{Dioxane}} A$$

iii)
$$\frac{\text{HNO}_3}{\text{AcOH}} \rightarrow \mathbf{C}$$


iv)
$$+ CH_3MgI$$
 \longrightarrow $\mathbf{E} + \mathbf{F}$

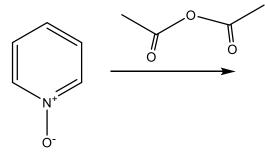
Page 3 of 6

QUESTION THREE (20 MARKS)

i)

a) Name the following compounds

b) Name the product(s) of the following reactions

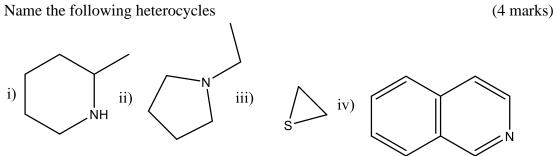

(5 marks)

ii)
$$\frac{\text{KI/AcOH}}{\text{aq.EtOH/H}_2O_2} \mathbf{C}$$

iii)
$$CH_3I$$
 $AcOH$ D

iv)
$$NH_3,200 \text{ degrees}$$
 E

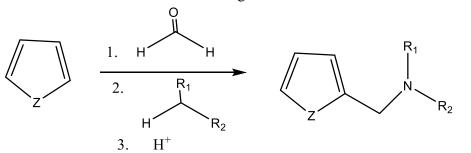
c) Write the mechanism of formation of the following reaction of pyridine-N-oxide with acetic anhydride (3 marks)



d) Write the mechanism of the condensation of α -amino ketone with a β -diketone (4 marks)

e) Name the following heterocycles (3mks)

QUESTION FOUR (20 MARKS)


a) Name the following heterocycles

b) Write the mechanism of the following reaction

(6 marks)

Z=O, S, NH

c) Give the products of the following reactions

(5 marks)

i)
$$CH_3CO_2NO_2$$
 A

$$\begin{array}{c|c}
S & Br_2 \\
\hline
AcOH
\end{array}$$

$$V)$$
 H_2,Pt,H^+

c) Write the mechanism of the Guareschi synthesis of unsymmetrical pyridines from the reaction between a β -dicarbonyl compound and a β -enamimocarbonyl compound (5 marks)
