CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN CHEMISTRY

CHEM 416: ORGANOMETALLIC CHEMISTRY

STREAMS: BSC (CHEM) TIME: 2 HOURS

DAY/DATE: TUESDAY 14/04/2020 11.30 AM – 1.30 PM

INSTRUCTIONS:

Answer question One (Compulsory) and any other Two questions

QUESTION ONE [30 MARKS]

(a) Identify the first-row transition metal in the following 18-electron species (4 marks)

(i) $(\eta^4 - C_4 H_4) M(CO)_3$

(ii) $[(\eta^3-C_3H_5)M(CN)_4]^{2-}$

 $(iii)(\eta^3-C_5H_5)(\eta^5-C_5H_5)M(CO)$

(iv) $(\eta^5-C_5H_5)M(NO)$ (has linear M–N–O)

(b) Explain the difference in the vibrational frequencies of carbonyl ligands in the following complexes. (2 marks)

Complex	ν(CO), cm ⁻
[W(CO) ₆]	1977
[Re(CO) ₆]+	2085
$[Os(CO)_6]^{2+}$	2190
$[Ir(CO)_6]^{3+}$	2254

(c) Discuss, with the aid of a CO molecular orbital diagram, bonding in metal carbonyl complexes. (5 marks)

(d) Predict the products of the following reactions.

(5 marks)

(i)
$$Mn(CO)_6$$
 + $Ph_2PCH_2PPh_2$ Heat

(ii)
$$W(CO)_5[C(C_6H_5)(OC_2H_5)] + BF_3$$

(iii)
$$(n^5-C_5H_5)(n^1-C_3H_5)Fe(CO)_2$$
 hv

(iv)
$$[(n^5-C_5H_5)Fe(CO)_2] + Al(C_2H_5)_3$$

$$(v)$$
 $V(CO)_6$ + NO \longrightarrow

- (e) Butanal can be synthesized from an alkene having one less carbon using the HCo(CO)₄ complex.
- (i) Write a detailed stepwise mechanism for the process and explain each catalytic step. (5 marks)
- (ii) Explain the limitations of the HCo(CO)₄ complex for the process. (3 marks)
- (f) Propose a plausible stepwise synthetic route to each of the following complexes. (6 marks)

(i)
$$(CO)_5W = C$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CH_3$$

$$CO)_5MO$$

$$CH_3$$

$$CH_3$$

$$CO)_5MO$$

$$CH_3$$

QUESTION TWO [20 MARKS]

(a) Write the formal names of the following complexes

(4 marks)

- (i) $[Mo(\eta^6-C_6H_6)(CO)_3]$
- (ii) [Fe(η^5 -C₅H₅)₂]
- (iii) [RhMe(PMe₃)₄]
- (iv) H₂Fe (CO)₄
- (b) Discuss the stepwise mechanism for polymerization of ethene using the Ziegler-Natta catalyst (8 marks)
- (c) Draw the structures of the possible product(s) of metathesis of the following alkenes.

(6 marks)

- (i) Propene and but-1-ene (ii) ethene and cyclohexene (iii) 1,7-octadiene
- (d) Describe one synthetic route to $Fe(C_5H_5)_2$ complex. (2 marks)

QUESTION THREE [20 MARKS]

- (a) Describe, with the aid of suitable examples, three methods used for laboratory synthesis of carbonyl complexes. (6 marks)
- (b) Discuss the catalytic cycle of the Wacker-Smidt synthesis of ethanal. (10 marks)
- (c) In a series of experiments, the rate of phosphine dissociation from cis-Mo(CO)₄L₂ (L = phosphine) was determined for several phosphines. The overall reaction in each case was of the form:

$$cis$$
-Mo(CO)₄L₂ + CO \longrightarrow Mo(CO)₅L + L.

The following rates were obtained:

Phosphine	Rate constant (s-1)
PMe ₂ Ph	$< 1.0 \times 10^{-6}$
$PMePh_2$	1.3×10^{-5}
PPh ₃	3.2×10^{-3}

Account for the trend in reaction rates

(2 marks)

(d) Explain the *trans influence* and *trans effect* in substitution reactions of square planar complexes. (2 marks)

QUESTION FOUR [20 MARKS]

- (a) Describe two synthetic routes to transition-metal alkyl complexes. (4 marks)
- (b) Complexes of formula Rh(CO)(phosphine)₂Cl have the C-O stretching bands shown below. Match the infrared bands with the appropriate phosphine. Justify your answers. (4 marks)

Phosphines: $P(p-C_6H_4F)_3$, $P(p-C_6H_4Me)_3$, $P(t-C_4H_9)_3$, $P(C_6F_5)_3$; v(CO), cm⁻¹: 1923, 1965, 1984, 2004

- (c) Propose a mechanism for the catalytic conversion of but-2-ene to butane using the RuCl₂(PPh₃)₃ complex. (5 marks)
- (d) Discuss the carbonylation of methanol using the $[IrI_2(CO)_2]^-$ complex. (7 marks)