CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

RESIT/SPECIAL

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (ARTS & SCIENCE)

CHEM 324: PHYSICAL METHODS OF STRUCTURE DETERMINATION

STREAM: BED (ARTS & SCI) TIME: 2 HOURS

DAY/DATE: TUESDAY 17/11/2020 5.00 P.M. – 7.00 P.M.

INSTRUCTIONS: ANSWER ALL QUESTIONS

QUESTION ONE (30 MARKS)

1.a (i) Calculate the molar refraction of ethyl acetate if the refractive index and density are
1.3701 and 0.901 g cm⁻³ respectively. Compare with the value of molar refraction obtained from the data given in Table 1 (9 marks)

Table 1: Atomic and group refractions

Atoms and groups	Refraction	Atoms and groups	Refraction
Н	1.100	S (C=S) thiocarbonyl	7.97
С	2.418	N (Primary aliphatic amine)	2.322
F	1.0	N (Sec. aliphatic amine)	2.499
Cl	5.967	N (tertiary aliphatic amine)	2.840
Br	8.865	N (primary aromatic amine)	3.21
I	13.900	N (Sec. aromatic amine)	3.59
O(C=O)Carbonyl	2.211	N (tertiary aromatic amine)	4.36
O(O-H) hydroxyl	1.525	N (amide)	2.65
O (C – O) ether, ester	1.643	NO2 aromatic nitro	7.30
S (S – H) mercapto	7.69	$C \equiv N$	5.459

CHEM 324

(ii)	The absorptivity of two compounds A and B at their absorption maximum of 345 nm and				
	420 nm are 214 Lg ⁻¹ cm ⁻¹ and 172 Lg ⁻¹ cm ⁻¹ respectively. Compound A absorbs	at 420 nm			
	$(\epsilon$ =8.2 Lg $^{\text{-1}}\text{cm}^{\text{-1}})$ while compound B does not absorb at 345 nm. Calculate the				
	concentration of the two compounds in a solution if the measured absorbance va	alue in a			
	1.00 cm cell are 0.65 at 345 nm and 0.437 at 420 nm respectively	(6 marks)			
(iii)	The concentration of an analyte in the test sample was determined by standard a	dditional			
	method. To 3ml of the sample solution taken in separate 25 ml flasks, 0 ml, 5 m	1 and 10			
	ml of standard solutions of the analyte of $2.5 \times 10^{-4}\text{M}$ were added and made upto 25ml.				
	The absorbance value recorded at a chosen wavelength were 0.18, 0.32, and 0.4	6			
	respectively. Calculate the concentration of the analyte in the test sample.	(5 marks)			
b	(i) Explain with a neat sketch the electronic transitions in molecules	(5 marks)			
	(ii) Give a brief explanation on the various factors which affect the absorption spectral				
	bands in organic compounds	(5 marks)			
QUES	STION TWO (20 MARKS)				
2.a (i)	Write a note on the different types of molecular vibrations in diatomic and polya	tomic			
	molecules	(5 marks)			
(ii) Explain the terms group frequency and finger print region with reference to IR spectra.					
	What is their significance?	(5 marks)			
b. (i)	Give a note on sample preparation methods for recording the IR spectra	(5 marks)			
(ii)	Explain the principle in the DRIFTs, ATR and NIR spectroscopic techniques	(5 marks)			
QUES	STION THREE (20 MARKS)				
3.a (i)) Discuss the theory of Raman spectroscopy	(5 marks)			
(ii) Justify the statement "IR and Raman spectroscopic techniques are considered as	<u>.</u>			

J.a	(1) Discuss the theory of Kaman spectroscopy	(5 marks)
	(ii) Justify the statement "IR and Raman spectroscopic techniques are considered a	.S
	complementary techniques"	(5 marks)
1	b. Write a note on the applications of Raman spectrometry	(10 marks)