CHUKA

UNIVERSITY

SUPPLEMENTARY/ SPECIAL EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

CHEM 323: CHEMICAL KINETICS

STREAMS: TIME: 2 HOURS

DAY/DATE: MONDAY 01/02/2021 8.30 AM – 10.30 AM

INSTRUCTIONS:

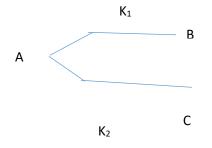
Answer ALL Questions

QUESTION ONE (30 Marks)

1a (i). For the reaction

$$2NO + 2H_2 \xrightarrow{K} N_2 + 2H_2O$$

Following mechanism has been proposed:


NO +NO \rightleftharpoons N₂O₂; with K₁ as the rate of forward reaction and K₋₁ as the rate of the reverse reaction

$$N_2O_2 \xrightarrow{K_2} N_2O + H_2O$$

$$N_2O + H_2 \xrightarrow{K_3} N_2 + H_2O$$

On the basis of the above mechanism, derive the rate law of N_2 (12 marks)

(ii) Consider the parallel reaction

Page 1 of 3

In an experiment, it was observed that 80% decomposition of A takes place in 40 minutes and analysis of product showed that 60% of B and 40% of C are present. Calculate K_1 and K_2 .

(6 marks)

(b) Write short notes on catalytic poisoning

(8 marks)

(c). Predict how the total pressure varies during the gas phase decomposition in a constant volume container (4 marks)

$$2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$$

QUESTION TWO (20 MARKS)

2a (i). An actinometer uses a solution of $K_3[Fe(C_2O_4)_3]$ in which Fe³⁺ is reduced and the oxalate ion is oxidized. Assuming $\emptyset = 1.24$ at 310 nm. Calculate the intensity of the incident light which produces 1.3×10^{-5} moles of Fe²⁺ in 36.5 min.

(9 marks)

- (ii). The same light source is used to irradiate a sample of CH_2CO for a period of 15.2 min. If the quantum yield of C_2H_2 is 1.0 and that of CO is 2.0, determine the amount of each gas produced by the photochemical reaction. (h = 6.62608×10^{-34} JS, NA= 6.02214×10^{23} mol⁻¹, $C=2.99792558 \times 10^8$ ms⁻¹, 1nm = 10^{-9} M) (5 marks)
- (b) An aqueous solution of a compound A of concentration 10^{-3} moles/litre absorbs 50% of incident radiation in a cell length 1cm and another compound B of concentration 2×10^{-3} moles/litre absorbs 60% of the incident radiation at a particular wavelength. Calculate the percentage absorbed in a solution containing 10^{-3} moles/litre of A and B each in the same cell at the wavelength. (6 marks)

QUESTION THREE (20 MARKS)

3a. A undergoes two simultaneous reactions to produce B and C according to

$$A \xrightarrow{K_1} B$$
, $A \xrightarrow{K_2} C$,

Show that Ea, the observed activation energy for the disappearance of A is given by the equation:

$$Ea = \frac{K_1 E_1 + K_2 E_2}{K_1 + K_2}$$
 (7 marks)

(b). The decomposition of PH3 at 950 K is observed and noting the change in total pressure as a function of time. The reaction is;

$$4PH_{3(g)} \rightarrow P_{4(g)} + 6H_{2(g)}$$

CHEM 323

The following measurements were made on the system containing only PH3 initially

Time (sec)	0	50	100
P (total) mmHg	200	299	332

Show that, it is a first order reaction and also calculate the rate constant	(8 marks)
(c) Derive the Michaelis- Menten equation	(5 marks)