MATH 124

THARAKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION SCIENCE

MATH 124: GEOMETRY AND LINEAR ALGEBRA

STREAMS: BED (SCI) P/T

TIME: 2 HOURS

DAY/DATE: WEDNESDAY 15/04/2020

2.30 P.M. - 4.30 P.M.

INSTRUCTIONS: Answer question ONE and any other TWO questions

QUESTION ONE (30 MARKS)

(a)	Find the slope m, x-intercept a, and y-intercept b of the line given below	
	5x + 2y + 2 = 0	[4 marks]
(b)	Find the distance between the point (4,1) and the line $y = 2x + 1$	[3 marks]
(c)	Find the centre and radius of the circle $2y^2 + 12x + 2x^2 - 18y + 34 = 0$	[4 marks]
(d)	Convert the following polar coordinates into Cartesian coordinates	[4 marks]
	(i) $(5, -40^{\circ})$	
	(ii) (6,200°)	
(e)	Given that $Z = 2 + 3i$ and $\frac{z}{\overline{z}} = a + bi$, determine the values of a and b.	[4 marks]
(f)	Determine \propto given that $\stackrel{a}{\sim} = \propto \stackrel{i}{\sim} - 2 \stackrel{j}{\sim} + \stackrel{k}{\sim}$ and $\stackrel{b}{\sim} = 2 \propto \stackrel{i}{\sim} + \propto j - 4 \stackrel{k}{\sim}$ are orthogonal	hogonal.
		[4 marks]
(g)	Given $B = \begin{pmatrix} 3 & 5\\ 2 & -3\\ 0 & 2 \end{pmatrix}$ and $C = \begin{pmatrix} 4 & 5\\ -2 & 0 \end{pmatrix}$ Find $B^T B + 3C$	[4 marks]

(h) Find the angle between the vectors $\stackrel{a}{\sim} = 6i + 2j + k$ and $\stackrel{b}{\sim} = -2i + 3j - k$ [4 marks]

MATH 124

QUESTION TWO (20 MARKS)

(a) Two lines L_1 and L_2 have equations $-\frac{1}{2}x = -4 - y$ and 3y = 4x - 10 respectively.

- (i) Find the point of intersection of the two lines
- (ii) L_3 is a line passing through the point where L_1 and L_2 intersect and is perpendicular to L_2 . Find the equation of L_3
- (iii) Calculate the acute angle between L_1 and L_3 [10 marks]
- (b) Given the equation of an ellipse $25x^2 + 9y^2 150x 72y + 144 = 0$ Find the
 - (i) Centre, foci and eccentricity
 - (ii) The coordinates of the vertices and equations of the directrices [10 marks]

QUESTION THREE

- (a) Calculate the centre and radius of a circle which passes through the points A(0, 2), B(2, 2), C(-2, -2). Hence find the equation of the circle. [8 marks]
- (b) Show that the shortest distance between point $P_1(x_1, y_1)$ and the line Ax + By + c = 0 is given by

$$d = \frac{Ax_1 + By_1 + c}{\sqrt{A^2 + B^2}}$$
 [7 marks]

(c) Given
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 1 & 0 \\ 2 & 1 & 1 \end{pmatrix}$$
 find A^{-1} using matrix determinant method [5 marks]

QUESTION FOUR

(a) Use matrices to solve the simultaneous equations below [10 marks] x+2y+3z = 52x - 3y - z = 3

$$-3x + 4y + 5z = 3$$

- (b) A parabola is define by the curve $y^2 6y 4x + 1 = 0$
 - (i) Show that the curve is of the form $(y k)^2 = 4c(x h)$
 - (ii) Identify V the vertex of the parabola and its axis of symmetry
 - (iii) State the coordinates of focus F,
 - (iv) Sketch the parabola and locate the directrix [10 marks] Page 2 of 3

MATH 124

QUESTION FIVE (20 MARKS)

- (a) Solve the following simultaneous equations using Cramer's rule [7 marks] x + y + z = 4 2x - 3y + 4z = 333x - 2y - 2z = 2
- (b) A hyperbola whose centre is (2, 3) has its foci $\sqrt{13}$ units away from the centre along an axis parallel to the y-axis. Given further that the vertices are 2 units away from the centre, find:
 - (i) The equation of the hyperbola in the form $Ax^{2} + Bxy + cy^{2} + Dx + Ey + F = 0$
 - (ii) State the equation of the asymptotes on the XY plane [8 marks]
- (c) A curve is defined by $x^2 + y^2 8y 6x = 0$
 - (i) Show that the curve defines a circle
 - (ii) Locate the centre C and radius r of the circle [5 marks]