CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF DEGREE OF MASTER OF SCIENCE (PHYSICS)

PHYS 941: CLASSICAL ELECTRODYNAMICS

STREAMS: PhD (PHYSIC) Y1S1
TIME: 3 HOURS
DAY/DATE: THURSDAY 06/12/2018
2.30 P.M - 5.30 P.M

INSTRUCTIONS

- Answer any four questions

Useful constants: $\left.\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}\right), \varepsilon_{0}=8.854 \times 10^{-12} \mathrm{~F}_{\mathrm{o}} \mathrm{m}^{-1}$, electronic charge $=1.6 \times 10^{-19} \mathrm{C}$

Question one (15 marks)

(a) With an expression discuss the Coulomb's law and explain the factors that determines its magnitudes.
(b) Three identical equal charges, $\mathrm{q}_{1}=\mathrm{q}_{2}=\mathrm{q}_{3}=\mathbf{Q}$ are placed at the apex of an equilateral triangle of side \mathbf{y}. Calculate the resultant force on a single charge at the apex of the triangle.
(c) What's the force on a 0.1 C charge moving at velocity $\mathrm{v}=(10 \mathrm{j}-20 \mathrm{k}) \mathrm{ms}^{-1}$ in a magnetic field $B=(3 i+4 k) \times 10^{-4}$ Teslas.

Question two (15 marks)

(a) Discuss Biot- Savert law using an expression and explain its parameters.
(3mks)
(b) Using Biot- Savert law, show that the expression for magnetic flux due to a circular current loop of radius \mathbf{R} at a point \mathbf{P}, a distance \mathbf{x} from the centre of current loop is given by;

$$
B=\frac{\mu_{0} I^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}}
$$

where \mathbf{B} is the magnetic flux, \mathbf{x} is the distance from the wire at which magnetic field is to be determined while μ_{o} is the permeability of free space
(c) In 2 (b), determine the magnetic field when $\mathbf{x} \gg \mathbf{R}$ and when $\mathbf{x}=\mathbf{0}$

Question three (15 marks)

(a) Write a differential equation that a Green function $G^{\prime}\left(x ; x^{\prime}\right)$ for Poisson's equation must
satisfy, for Dirichlet boundary conditions. Include a statement of the boundary conditions.
(b) A problem has Dirichlet boundary conditions. Derived the general solution to the Poisson equation for electrostatic potential $\phi(x)$ using a Green's function?
(5 mks)
(c) In an electrostatics problem with Neumann boundary conditions, what is the simplest allowable boundary condition on the Green's function $G^{\prime}\left(x ; x^{\prime}\right)$? Hint: The result must be consistent with the differential equation that G satisfies.

Question four (15 marks)

(a) At the upper surface of the Earth's atmosphere, the time average magnitude of the Poynting

$$
\langle\mathrm{S}\rangle=1.35 \times 10^{3} \mathrm{~W} / \mathrm{m}^{2}
$$

vector that is the solar constant.
(i) Assuming that the Sun's electromagnetic radiation is a plane sinusoidal wave, what are the magnitudes of the electric and magnetic fields?
(ii) What is the total time-averaged power radiated by the Sun if the mean Sun-Earth distance

$$
{ }_{\text {Is }} \mathrm{R}=1.5 \times 10^{11} \mathrm{~m}
$$

(b) Compute the intensity of the standing electromagnetic wave given by;

$$
\begin{equation*}
E_{y}(x, t)=2 E_{0} \cos (k x) \cos (w t) \quad E_{y}(x, t)=2 E_{0} \cos (k x) \cos (w t) \tag{7mks}
\end{equation*}
$$

and

Question five (15 marks)

(a) An electric dipole with $\mathrm{q}_{1}=20 \mu \mathrm{C}$ at $(-\mathrm{d}, 0)$ and $\mathrm{q}_{2}=-10 \mu \mathrm{C}$ at $(+\mathrm{d}, 0)$ is in a two dimensional Cartesian coordinate. Calculate the resultant electric field strength at a point with coordinates (x, y). Take $d=1 \mathrm{~m}$ and $\mathrm{x}=\mathrm{y}=2 \mathrm{~m}$.
(b) Discuss the four Maxwell's equation of classical electromagnetism with a source (8mks)

