CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS
FIRST YEAR EXAMINATION FOR THE AWARD OF
MASTER OF SCINCE IN ECONOMICS AND MASTER OF SCIENCE IN AGRICULTURAL ECONOMICS

MSEC 832: MATHEMATICAL METHODS FOR ECONOMISTS
STREAMS: MSEC, MSAE YISI
TIME: 3 HOURS
DAY/DATE: THURSDAY 09/08/2018
2.30 PM - 5.30 PM

INSTRUCTIONS:
Answer Question One and any other Three Questions from the remaining
QUESTION ONE
(a) Given the following differential equation and the accompanying initial conditions $y=-3 y+12 t=0 \wedge y=24$ i. e $y(0)=24$

Find:
(i) Homogenous solution
[2 marks]
(ii) Particular solution
[2 marks]
(iii) General solution
[2 marks]
(iv) Unique or definite solution
[2 marks]
(b) Suppose the growing value of wine is represented by the following exponential function $V=200 e^{t^{\frac{4}{4}}}$. Considering a discount rate of 12% under continuous compounding, find the optimal time and confirm that the growing value of wine is maximized at [12 marks]

QUESTION TWO

(a) (i) Find the sign of Q given the following: (hint apply descriminant approach)

$$
\begin{aligned}
& Q=\left[\begin{array}{lll}
X & Y & Z
\end{array}\right]\left[\begin{array}{ccc}
-6 & 0 & 1 \\
0 & -5 & 2 \\
1 & 2 & 4
\end{array}\right]\left[\begin{array}{l}
X \\
Y \\
Z
\end{array}\right] \\
& 1 \times 3 \\
& 3 \times 33 \times 1 \\
& Q=X^{\prime} D X
\end{aligned}
$$

(ii) Find the sign of Q by Hessian approach.
(b) (i) Present the following in two forms of matrix format and then find $\frac{\partial z}{\partial x}$

$$
Z=3 x_{1}+4 x_{2}+6 x_{3}+5 x_{4}
$$

(ii) Given the following sets of matrices

$$
\begin{aligned}
& Q=\left[X_{1} X_{2}\right]\left[\begin{array}{ll}
4 & 3 \\
3 & 7
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& 1 \times 2
\end{aligned}
$$

$$
2 \times 22 \times 1
$$

$$
Q=X^{\prime} D X
$$

$$
1 \times 22 \times 22 \times 1
$$

Find $\frac{\partial Q}{\partial X}$ (Hint: expand the polynomial then apply the formula $\quad \frac{\partial q}{\partial x}=\left[\begin{array}{l}\frac{\partial q}{\partial x_{1}} \\ \frac{\partial q}{\partial x_{2}}\end{array}\right]$
(c) Consider the following polynomial function $Q=2 X^{2}-4 X Y+6 Y^{2}-8 y z+6 z^{2}$
(i) Is Q a form?
(ii) If it is a form, what type of form is it?
(iii) Present Q in matrix format.
(iv) Find the sign of Q by discriminant and Hessian approach.

QUESTION THREE

(a) A firm in a perfectly competitive market has the following demand, total variable cots and total fixed costs functions:

Demand function: $\quad P=12.1$
Total variable cost: \quad TVC $=\frac{1}{20} Q^{2}-1.5 Q^{2}+17.5 Q$
Total fixed costs $=F C=50$

Obtain the following functions:
(i) Total cost
(ii) Total revenue
(iii) Profit
(iv) Find the output level at which profits are maximized.
(v) Compare the marginal cost and marginal revenue at the profit maximizing output and comment. marks]
(b) Demonstrate Euler's theorem for

$$
Q=A K^{\frac{2}{5}} L^{\frac{8}{5}}
$$

QUESTION FOUR

A consumer is faced with the following utility function and budget constraint: $\cup=f\left(Q_{1} Q_{2}\right)$. His budget $\mathrm{M}=240$ and the exogenously determined prices of good $Q_{1} \wedge Q_{2}$ are respectively given as follows: $\quad P_{1}=2 \wedge P_{2}=2$
(i) Set up the consumers budget constraint
(ii) Set up the constrained utility maximization problem for the consumer. [2 marks]
(iii) What is the corresponding composite or Lagrangian function?
(iv) Determine the critical values of Q_{1} and Q_{2} and λ.
(v) By applying the second order condition confirm that the critical values present a maximum utility.

QUESTION FIVE

A three sector input-output table is given by the following:

	1	2	3	D	X
1	X_{11}	x_{12}	x_{13}	D_{1}	X_{1}
2	x_{21}	x_{22}	x_{23}	D_{2}	X_{2}
3	x_{31}	x_{32}	x_{33}	D_{3}	X_{3}
V	V_{1}	V_{2}	V_{3}		
X	X_{1}	X_{2}	X_{3}		

(i) The input-output coefficients are denoted by $\boldsymbol{\alpha}_{i j^{\prime}}\left(i^{\prime}, j^{\prime}=1,2,3\right) \quad$ write out these input output coefficients in terms of $X_{i \prime}\left(i^{\prime},{ }^{\prime}=1,2,3\right)$ and the total outputs [3 marks]
(ii) Find x_{12}, x_{31}, x_{33} in terms of $\alpha_{i j} \wedge X_{j}$
(iii) Find GNP by expenditure approach
(iv) Derive the input-output model [10 marks]
(v) Insert the dimensions of the different elements of the input-output model. [3 marks]

QUESTION SIX

(a) Given the following composite function: $Z=X^{3} Y^{2} X=\mu^{3} Y=\mu^{2} \quad$ FIND:
(i)
∂z
[2 marks]
(ii) $\partial^{2} z$
[2 marks]
(iii) $\frac{\partial z}{\partial \mu}$ and present the direct and the indirect impact of U and Z.
(b) By applying total differentiation and implicit function differentiation, find $\frac{\partial y}{\partial x}$ given the following function $4 X^{3} Y^{4}+4 Y^{2}+83=0$
[5 marks]
(c) A utility function is given as $V_{0}=X^{\frac{1}{5}} Y^{\frac{3}{5}}$
(i) By applying differentials and implicit function differentiation, find $M R C S_{Y X}$

$$
\text { given } V_{0}=2 \wedge X=2
$$

marks]
(ii) Interpret your results.
[3 marks]

