CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD OF MASTER OF SCINCE IN ECONOMICS AND MASTER OF SCIENCE IN AGRICULTURAL ECONOMICS

MSEC 832: MATHEMATICAL METHODS FOR ECONOMISTS

STREAMS: MSEC, MSAE YISI

TIME: 3 HOURS

DAY/DATE: THURSDAY 09/08/2018 INSTRUCTIONS: 2.30 PM – 5.30 PM

Answer Question One and any other Three Questions from the remaining

QUESTION ONE

(a) Given the following differential equation and the accompanying initial conditions $\dot{y}=-3y+12t=0 \land y=24i.ey(0)=24$

Find:

(i)	Homogenous solution	[2 marks]
(ii)	Particular solution	[2 marks]
(iii)	General solution	[2 marks]
(iv)	Unique or definite solution	[2 marks]

(b) Suppose the growing value of wine is represented by the following exponential function $V=200e^{t^{\frac{1}{4}}}$. Considering a discount rate of 12% under continuous compounding, find the optimal time and confirm that the growing value of wine is maximized at (t). [12 marks]

QUESTION TWO

(a) (i) Find the sign of Q given the following: (hint apply descriminant approach)

$$Q = \begin{bmatrix} X \ Y \ Z \end{bmatrix} \begin{bmatrix} -6 & 0 & 1 \\ 0 & -5 & 2 \\ 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \end{bmatrix}$$

$$1 \times 3$$

$$3 \times 33 \times 1$$

$$Q = X' D X$$
[3 marks]
(i) Find the sign of Q by Hessian approach. [4 marks]
(b) (i) Present the following in two forms of matrix format and then find $\frac{\partial z}{\partial x}$

$$Z = 3x_1 + 4x_2 + 6x_3 + 5x_4$$
[2 marks]

(ii) Given the following sets of matrices

$$Q = \begin{bmatrix} X_1 X_2 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 3 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

 1×2

Q = X' D X

$$1 \times 22 \times 22 \times 1$$

Find
$$\frac{\partial Q}{\partial X}$$
 (Hint: expand the polynomial then apply the formula $\frac{\partial q}{\partial x} = \begin{bmatrix} \frac{\partial q}{\partial x_1} \\ \frac{\partial q}{\partial x_2} \end{bmatrix}$

[3 marks]

(c) Consider the following polynomial function
$$Q=2X^2-4XY+6Y^2-8yz+6z^2$$

(i)	Is Q a form?	[1 mark]
(ii)	If it is a form, what type of form is it?	[1 mark]
(iii)	Present Q in matrix format.	[2 marks]
(iv)	Find the sign of Q by discriminant and Hessian approach.	[4 marks]

QUESTION THREE

(a) A firm in a perfectly competitive market has the following demand, total variable cots and total fixed costs functions:

Demand function: P=12.1

Total variable cost: $TVC = \frac{1}{20}Q^2 - 1.5Q^2 + 17.5Q$

Total fixed costs = FC=50

Obtain the following functions:

(i)	Total cost	[1 mark]
(ii)	Total revenue	[1 mark]
(iii)) Profit	[4 marks]
(iv)	Find the output level at which profits are maximized.	[5 marks]
(v)	Compare the marginal cost and marginal revenue at the profit ma and comment.	aximizing output [5
marks]		L

(b) Demonstrate Euler's theorem for

$$Q = AK^{\frac{2}{5}}L^{\frac{8}{5}}$$
 [4 marks]

QUESTION FOUR

A consumer is faced with the following utility function and budget constraint: $\bigcup = f(Q_1Q_2)$. His budget M=240 and the exogenously determined prices of good $Q_1 \land Q_2$ are respectively given as follows: $P_1 = 2 \land P_2 = 2$

(i)	Set up the consumers budget constraint	[1 mark]
(ii)	Set up the constrained utility maximization problem for the consumer.	[2 marks]
(iii)	What is the corresponding composite or Lagrangian function?	[2 marks]
(iv)	Determine the critical values of Q_1 and Q_2 and λ .	[6 marks]
(v)	By applying the second order condition confirm that the critical values pr maximum utility.	esent a [9 marks]

QUESTION FIVE

A three sector input-output table is given by the following:

	1	2	3	D	Х
1	<i>x</i> ₁₁	<i>X</i> ₁₂	<i>X</i> ₁₃	D_1	<i>X</i> ₁
2	<i>X</i> ₂₁	x ₂₂	<i>X</i> ₂₃	D_2	X ₂
3	<i>x</i> ₃₁	<i>x</i> ₃₂	x ₃₃	D_3	<i>X</i> ₃
V	V_1	V_2	V_3		
Х	X ₁	<i>X</i> ₂	<i>X</i> ₃		

(i) The input-output coefficients are denoted by $\propto_{ij} (i, j=1,2,3)$ write out these input output coefficients in terms of $X_{ij} (i, j=1,2,3)$ and the total outputs [3 marks]

(ii) Find
$$x_{12}, x_{31}, x_{33}$$
 in terms of $\alpha_{ij} \wedge X_j$ [3 marks]

(iii) Find GNP by expenditure approach [1 mark]

(iv) Derive the input-output model [10 marks]

(v) Insert the dimensions of the different elements of the input-output model. [3 marks]

QUESTION SIX

(a)	Given the following composite function: $Z = X^3 Y^2 X = \mu^3 Y = \mu^2$ FIND:	:
	(i) ∂z	[2 marks]
	(ii) $\partial^2 z$	[2 marks]
	(iii) $\frac{\partial z}{\partial \mu}$ and present the direct and the indirect impact of U and Z.	[2 marks]
(b)	By applying total differentiation and implicit function differentiation, find	$\frac{\partial y}{\partial x}$ given
	the following function $4X^3Y^4 + 4Y^2 + 83 = 0$	[5 marks]
(c)	A utility function is given as $V_0 = X^{\frac{1}{5}} Y^{\frac{3}{5}}$	
	(i) By applying differentials and implicit function differentiation, find given $V_0 = 2 \wedge X = 2$	MRCS _{yx}
marks	3] (ii) Interpret your results.	[3 marks]