ECON 332

CHUKA



UNIVERSITY

# **UNIVERSITY EXAMINATIONS**

#### EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN ECONOMICS AND STATISTICS AND BACHELOR OF ARTS ECONOMICS AND SOCIOLOGY

## ECON 332: ECONOMETRICS II

**STREAMS:** 

**TIME: 2 HOURS** 

#### DAY/DATE: TUESDAY 10/04/2018 INSTRUCTION:

2.30 P.M – 4.30 P.M

### • Answer question one and any other two questions from the remaining

1. (a) (i) State five consequences of violating the assumption of homoscedasticity.

[5marks]

(ii) Outline and discuss briefly the tests used by econometricians to establish the presence of heteroscedasticity. [5marks]

(b) The following data shows annual consumption expenditure and disposable income in kenya for a period of 12 years (1997 - 2008) the values are measured in billions of kshs and residuals are shown in column four in the table below:

| Year (t)        | 97 | 98  | 99   | 00   | 01   | 02  | 03   | 04    | 05   | 06    | 07  | 08   |
|-----------------|----|-----|------|------|------|-----|------|-------|------|-------|-----|------|
| Consumptio      | 29 | 303 | 308  | 325  | 339  | 338 | 358  | 358   | 378  | 591   | 41  | 432  |
| n exp ( $c_t$ ) | 7  |     |      |      |      |     |      |       |      |       | 3   |      |
| Disposable      | 33 | 333 | 338  | 360  | 378  | 375 | 398  | 410   | 417  | 445   | 46  | 486  |
| income $(y_t)$  | 1  |     |      |      |      |     |      |       |      |       | 2   |      |
| Stochastic      | -3 | 1.9 | 2.12 | 0.46 | 0.08 | 0.9 | 1.62 | -8.64 | 5.75 | -4.97 | 2.2 | 1.71 |
| term $(e_t)$    |    | 4   |      |      |      | 8   |      |       |      |       | 9   |      |

A sample regression model was estimated using this data and the consumption function for the economy was found to be:

 $\hat{c}_t = 21.5 + 0.84 y_t, \ R^2 = 0.992$ 

#### ECON 332

| (i)   | Test for heteroscedasticity using spearman's rank correlation co-efficient. |                 |  |  |  |  |  |
|-------|-----------------------------------------------------------------------------|-----------------|--|--|--|--|--|
|       |                                                                             | [8marks]        |  |  |  |  |  |
| (ii)  | Conduct the same test using the goldfeld and quandt test. (omit 2 o         | bservations for |  |  |  |  |  |
|       | 2001 and 2003).                                                             | [10marks]       |  |  |  |  |  |
| (iii) | Comment on the two results.                                                 | [2marks]        |  |  |  |  |  |
|       |                                                                             |                 |  |  |  |  |  |

2. (a) (i) State the assumptions of a sample regression model presented in matrix form. [2marks]

(ii) Explain the main steps in the estimation of the above model and discuss its properties in matrix notation. [2marks]

(b) (i) Given sample data in matrix/ vector form as follows;

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{e}_i$$

(n x 1) (n xk) (k x1) (k x 1)

| (i)   | Derive the normal equation in matrix form. | [2marks] |
|-------|--------------------------------------------|----------|
| (ii)  | Determine the expectation of Y (n x1)      | [2marks] |
| (iii) | Determine the covariance of Y (n x 1)      | [2marks] |
| (iv)  | Derive the covariance of $e_i$ (n x1)      | [2marks] |

(c) A household survey is conducted by a group of economics students in Ndagani to establish the relationship between disposable income ( $x_3$ ) the prices of a basket of goods ( $x_2$ ) and house total expenditure (Y). The observations of this cross section data is presented in the table below in ksh thousands.

| Household | Total       | Price of a basket of | Disposable income |
|-----------|-------------|----------------------|-------------------|
|           | expenditure | goods                |                   |
| (i)       | Y           | $(X_2)$              | $(X_3)$           |
| 1         | 3           | 3                    | 5                 |
| 2         | 1           | 1                    | 4                 |
| 3         | 8           | 5                    | 6                 |
| 4         | 3           | 2                    | 4                 |
| 5         | 5           | 4                    | 6                 |

- (i) Use matrix algebra to obtain the relationship between  $Y_{1,}X_{2}$  and  $X_{3}$ . [6marks]
- (ii) Estimated  $R^2$  for this data. [2marks]
- 3. Consider the infinite distributed lag model given below:

#### ECON 332

 $Y_t = \alpha + \beta_0 x_t + \beta_1 x_{t-1} + \beta_2 x_{t-2} + \dots + \beta_2 x_{t-2} + e_i$ 

Where y and x denote consumption and disposable income respectively.

| Year        | 1990 | 1991 | 1992 | 1993 | 1994 | 1995 | 1996 | 1997 | 1998 | 1999 |
|-------------|------|------|------|------|------|------|------|------|------|------|
| Consumption | 325  | 335  | 355  | 375  | 401  | 433  | 466  | 492  | 537  | 576  |
| (y)         |      |      |      |      |      |      |      |      |      |      |
| Income (x)  | 350  | 364  | 383  | 405  | 438  | 473  | 512  | 547  | 590  | 630  |

(i) Transform the model in accordance with Koyek's scheme. [5marks]

(c) Use the estimated co-efficient in part (b) to estimate the impact multiplier, total multiplier and mean lag. [5marks]

4. Consider the following two simultaneous equations :

 $R_t = \alpha_0 + \alpha_1 m_t + \alpha_2 y_t + e_i$ 

 $Y_t = \beta_0 + \beta_1 R_t + \beta_2 I_t + e_i$ 

Where

 $M_t$  - money supply

 $Y_t$  = Income

 $R_t$  = Interest rates

 $T_t$  = Investment

- (i) Identify the current endogenous variables, current exogenous variables, lagged endogenous variables. Hence identify predetermined variables. [5marks]
  (ii) Write the model in reduced form. [10marks]
- (iii) What is simultaneous equation bias? Briefly explain using the above equations.

[5marks]

5. (a) Consider the following estimated model :

 $Y_t = 1.03 + 4.45 X_{1t} + 0.68 X_{2t} + 1.25 Y_{t-1}$ T = (2.77) (8.32) (-1.10) (0.83)

<sup>(</sup>b) Use Koyek's scheme transformation to obtain estimates of the parameters of the model using the above data. [10marks]

 $R^2 = 0.87$  n= 20 d=2.25

Determine whether or not there is autocorrelation in the above model. [8marks]

(b) The stochastic term in a regression model follows first order autocorrelation relationship.

| (i) Write out this autocorrelation relationship . [3marks                                                                          | 5] |
|------------------------------------------------------------------------------------------------------------------------------------|----|
| (ii) State the assumption governing the variables in the relationship. [3marks                                                     | ;] |
| (iii) Specify the maginitude of the autocorrelation co-efficient, explaining the implications of that order of magnitude. [3marks] | ;] |
| (iv)What are the main features of the relationship? [3marks                                                                        | 5] |