CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR

PHYS 313: ELECTRICITY AND MAGNETISM II

STREAMS:

TIME: 2 HOURS
DAY/DATE: MONDAY 4/12/2017
2.30 P.M -4.30 P.M

INSTRUCTIONS:

- Answer question one and any other two questions

QUESTION ONE (30MKS)

1 a) State any three applications of Gauss's law [3marks]
b) Derive an expression for electric potential V of a point charge Q [4marks]
c)Calculate the potential at a point 0.05 m inside a charged sphere of radius 0.1 m and volume charge density $2.4 \times 10^{-7} \mathrm{C} / \mathrm{m}^{3}$
d) Distinguish between a conductor and a dielectric
e)Derive an expression for the work done in changing the orientation of a dipole in electric field E from 90° to θ°
f) Derive Gauss's law in the form
$\int_{S} E . d \mathfrak{a}=\frac{Q}{\varepsilon o}$
g) Write down Maxwell's equations of electromagnetism in their general differential form in a vacuum
h) Explain the reason as to why charges only reside on the surface of a conductor

QUESTION TWO (20MKS)

2a) Show that potential due to the dipoles at a point P is given by $\mathrm{V}_{\mathrm{P}}=\frac{Q a \cos \varphi}{4 \pi \epsilon \pi r 2}$
[7marks]

b) From the equation for potential due to a dipole at point P , show that the electric field component in the Z- direction is given by

$$
\mathrm{E}_{\mathrm{Z}}=\frac{P}{4 \pi \varepsilon o} \quad\left(\frac{3 \cos ^{2} \theta-1}{r 3}\right)
$$

b) Explain any three types of filters

QUESTION THREE (20MKS)

3a)Laplace equation in Cartesian rectangular coordinates is
$\frac{\sigma 2 v}{\sigma x 2}+\frac{\sigma 2 v}{\sigma y 2}+\frac{\sigma 2 v}{\sigma z 2}=0$
Assuming that the solution of this equation is a product of three functions which are separately functions of x, y and z . Show the most general form of this solution
[9marks]
b)Derive an expression for electric field \mathbf{E} at a point P outside a sphere of radius R and uniform volume change density ρ
c) Calculate the electric field at a point 0.001 m from the surface of a charged sphere of radius 0.05 m and volume charge density $4 \times 10^{-7} \mathrm{C} / \mathrm{m}^{3}$

QUESTION FOUR (20MKS)

4a) Staring from Gauss's law in a vacuum derive an expression for the Gauss's law in dielectric
b) Show that the volume change density is given by
$\rho_{b}=-\nabla . P$
c) Derive the equation of continuity

QUESTION FIVE (20MKS)

5a) Starting from ampere's law, derive Maxwell's electromagnetic equation [8marks] b) For a series arrangement of R, L and C circuit and given that $R=3 \times 10^{5} \Omega, L=10^{-3} \mathrm{H}$ and $\mathrm{C}=60 \mathrm{PF}$. Calculate:
i. The total current in each arm when a voltage of 20 V r.m.s at a frequency of 0.1 MHZ is applied [5marks]
ii. The phase of the total current drawn from the generator. [5marks]
c) Define polarization [2marks]

