CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR

PHYS 313: ELECTRICITY AND MAGNETISM II

STREAMS:	TIME: 2 HOURS
DAY/DATE: MONDAY 4/12/2017	2.30 P.M -4.30 P.M
INSTRUCTIONS:	
• Answer question one and any other two questions	
QUESTION ONE (30MKS)	
1 a) State any three applications of Gauss's law	[3marks]
b) Derive an expression for electric potential V of a point cha	rge Q [4marks]
c)Calculate the potential at a point 0.05 m inside a charged sp	ohere of radius 0.1 m and
volume charge density 2.4×10^{-7} C/m ³	[5marks]
d) Distinguish between a conductor and a dielectric	[2marks]
e)Derive an expression for the work done in changing the o	prientation of a dipole in
electric field E from 90° to θ^{O}	[4marks]
f) Derive Gauss's law in the form	
$\int_{s} E.d\mathfrak{a} = \frac{Q}{\varepsilon o}$	[5marks]
g) Write down Maxwell's equations of electromagnetism in	their general differential
form in a vacuum	[4marks]
h) Explain the reason as to why charges only reside on the su	urface of a conductor
	[3marks]

QUESTION TWO (20MKS)

2a) Show that potential due to the dipoles at a point P is given by $V_p = \frac{Qa \cos \varphi}{4\pi\epsilon \pi r^2}$

[7marks]

b) From the equation for potential due to a dipole at point P, show that the electric field component in the Z- direction is given by

$E_z =$	$\frac{P}{4\pi\varepsilon o}$	$\left(\frac{3\cos^2\theta-1}{r^3}\right)$	[10marks]
b) Ex	plain an	y three types of filters	[3marks]

QUESTION THREE (20MKS)

3a)Laplace equation in Cartesian rectangular coordinates is

$$\frac{\sigma^2 v}{\sigma x^2} + \frac{\sigma^2 v}{\sigma y^2} + \frac{\sigma^2 v}{\sigma z^2} = 0$$

Assuming that the solution of this equation is a product of three functions which are separately functions of x, y and z. Show the most general form of this solution

[9marks]

b)Derive an expression for electric field ${\bf E}$ at a point P outside a sphere of radius R and uniform volume change density ρ [7marks]

c) Calculate the electric field at a point 0.001 m from the surface of a charged sphere of radius 0.05 m and volume charge density 4×10^{-7} C/m³ [4marks]

QUESTION FOUR (20MKS)

4a) Staring from Gauss's law in a vacuum derive an expression for the Gauss's law in dielectric [6marks]

b) Show that the volume change density is given by	
$ \rho_b = -\nabla P $	[6marks]
c) Derive the equation of continuity	[8marks]

PHYS 313

QUESTION FIVE (20MKS)

5a) Starting from ampere's law, derive Maxwell's electromagnetic equation	[8marks]
b) For a series arrangement of R, L and C circuit and given that $R=3x10^5\Omega$	$h = 10^{-3} H$
and C= 60PF. Calculate:	
	C

i.	The total current in each arm when a voltage of 20 V r.m.s	at a frequency of
	0.1 MHZ is applied	[5marks]
ii.	The phase of the total current drawn from the generator.	[5marks]
c) Def	ine polarization	[2marks]