PHYS 811

CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FIRST YEAR EXAMINATION FOR THE AWARD MASTER OF SCIENCE IN PHYSICS

PHYS 811: MATHEMATICS PHYSICS

STREAMS: MSC (PHYS) SB

TIME: 3 HOURS

DAY/DATE: TUESDAY 05/12/2017 11.30 A.M. – 2.30 P.M.

INSTRUCTIONS:

- Answer any four questions
- Do not write anything on the question paper
- This is aclosed book exam, no reference materials are allowed in the examination room
- There will be no use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

QUESTION ONE

(a)	Show that $\frac{\vec{r}}{r^2}$ is irrotational	[6 marks]
(b)	If $r = (x^2 + y^2 + z^2)^{\frac{1}{2}}$, show that $\frac{1}{r}$ is a solution of Laplace's equation.	[6 marks]
(c)	Find the value of a if the vector, $\vec{V} = (x + 3y)\hat{\imath} + (y - 2z)\hat{\jmath} + (x + az)\hat{k}$ is solenoidal.	[3 marks]
ΟΠΕΩΤΙΟΝ ΤΜΟ		

QUESTION TWO

(a) Find the Eigen values and normalized vector of the matrix. [5 marks]

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

(b) Use matrix A to verify Cayley-Hamilton theorem. Hence find A^{-1} . [10 marks]

 $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 1 \end{bmatrix}$

PHYS 811

QUESTION THREE

(a) Evaluate
$$\int_0^\infty \chi^7 e^{-x} dx$$
 [3 marks]

(b) Evaluate
$$I = \int_0^1 \chi^5 (1-\chi)^4 dx$$
 [3 marks]

(c) Solve the differential equation, $\frac{d^2\psi}{dx^2} + (E - x^2)\psi = 0$ such that $\psi \to 0$ as $|x| \to \infty$. You may need to put $\psi = V \frac{-x^2}{e^2}$ [9 marks]

QUESTION FOUR

- (a) Using Fourier's series prove that $\sum_{n=1}^{\infty} \frac{1}{n^6} = \frac{\pi^2}{6}$ [8 marks]
- (b) Find the finite Fourier cosine transform of x. [7 marks]

QUESTION FIVE

- (a) Find the steady temperature distribution of a thin rectangular plate bounded by the lines x = 0, x = l, y = 0 and y = b, assuming that the edges x = 0, x = 1 and y = 0 are being kept at a temperature zero while the edge y = b maintained at temperature *F* (*x*). [10 marks]
- (b) Find the Laplace transform of the following functions
 - (i)F(t) = 1(ii)F(t) = t $(iii)F(t) = e^{at}$

[5 marks]
