

PHYS 419: COMMUNICATION ELECTRONIC II

STREAMS:
TIME: 2 HOURS
DAY/DATE: THURSDAY 7/12/2017
11.30 A.M - 1.30 P.M.

INSTRUCTIONS:

- Answer Question ONE and any other TWO Questions.

QUESTION ONE [30 MARKS]

(a) (i) What do you understand by sideband frequencies in an AM wave? [2 Marks]
(ii) What are the essentials in demodulation?
[3 Marks]
(b) The r.m.s value of carrier voltage is 100 V . After amplitude modulation by a sinusoidal voltage, the r.m.s value becomes 110 V . Calculate the modulation index
(c) Explain why modulation is necessary in communication systems.
[2 Marks]
(d) A carrier of peak voltage 0.05 V and frequency 200 kHz is amplitude modulated by a signal of peak voltage 10 V and frequency 1 kHz . Find
(i) Frequencies in the output spectrum.
(ii) The peak values of output components if $\mathrm{m}=0.5$ and voltage gain $\mathrm{A}=100$.
(e) Explain the components of a transmitter.
(f) Give the difference between AM and FM receivers.
(g) A transmitter radiates a total power of 10 kW . The carrier is modulated to a depth of 60%. Calculate
(i) The power of the carrier
(ii) Power in each sideband.

QUESTION TWO [30 MARKS]

(a) A 50 kW carrier is to be modulated to a level of 85%. What is the carrier power after modulation? What is the sideband power?
[7 Marks]
(b) A 500 Hz modulating voltage produces a frequency deviation of 2.25 kHz . What is the modulation index? If the amplitude of the modulation voltage is kept constant but its frequency is raised to 6 kHz , what is the new deviation?
[7 Marks]
(c) Derive the voltage equation of an AM wave.
[6 Marks]

QUESTION THREE [30 MARKS]

(a) A frequency modulated voltage wave is given by the equation $e=12 \cos \left(6 x 10^{8} t+\right.$ 5 sine $1250 t$)

Find,

(i) Carrier frequency
[2 Marks]
(ii) Signal frequency
[2 Marks]
(iii)Modulation index
[2 Marks]
(iv)Maximum frequency deviation
[2 Marks]
(v) Power dissipated by the FM wave in 10 -ohm resistor.
(b) In an FM system, when the audio frequency (AF) is 500 Hz and the AF voltage is 2.4 V , the frequency deviation is 4.8 kHz . If the AF voltage is now increased to 7.2 V , what is the new frequency deviation? If the AF voltage is raised to 10 while the AF is dropped to 200 Hz , what is the deviation? Find the modulation index in each case.
(c) Explain the essentials in demodulation.
[4 Marks]

QUESTION FOUR [30 MARKS]

(a) (i) Explain the stages of superhetrodyne radio receiver.
[5 Marks]
(ii) State the advantages of superhetrodyne circuit.
[5 Marks]
(b) Explain how a detector performs its function as a rectifier to the modulated wave. [6 Marks]
(c) Draw a diode detector circuit and explain its action.
[4 Marks]

QUESTION FIVE [30 MARKS]

(a) Using a block diagram explain the various sections of an FM receiver.
[10 Marks]
(b) The lead current in the transmitting antenna of an unmodulated AM transmitter is 8 A . What will be the antenna current when modulation is 40% ?
[6 Marks]
(c) A 25 MHz carrier is modulated by a 400 Hz audio sine wave. If the carrier voltage is 4 V and the maximum frequency deviation is 10 kHz , write down the voltage equation of the FM wave.
[4 Marks]

