#### **PHYS 414**

**CHUKA** 



UNIVERSITY

#### UNIVERSITY EXAMINATIONS

## FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR **OF SCIENCE IN PHYSICS**

### PHYS 414: NUCLEAR AND ATOMIC PHYSICS

| STREAMS: B.Sc PHYSICS Y4S1 | TIME: 2 HOURS        |
|----------------------------|----------------------|
| DAY/DATE: FRIDAY 8/12/2017 | 2.30 P.M - 4.30 P.M. |

#### **QUESTION ONE [30 MARKS]**

a). Define the terms nuclear fusion and nuclear fission

b). The electron in the hydrogen atom makes a transition from the n=4 to the ground state. Find the wavelength and frequency of the emitted photon. ( $R_{\rm H} = 1.097 \times 10^7 \text{ m}^{-1}$ .) [4 Marks]

c).Show that 
$$E_n = \frac{-m_e k_e^2 e^4}{2h^2} \left(\frac{1}{n^2}\right) n = 1,2,3...$$
 [4 Marks]

d). State Pauli's Exclusion principle

e).Write electronic configuration of z = 21 utilizing the exclusion principle. [3 Marks]

f).Estimate the energy of the characteristic X-ray emitted from a tungsten target when an electron drops from a N shell (n = 4) to a vacancy in the K shell (n = 1). Z = 74 [5 Marks]

g).Draw an energy level diagram for hydrogen and at least show four series [4 Marks]

h). The nuclear reaction  ${}^{1}_{0}n + {}^{10}_{5}B \rightarrow {}^{7}_{3}Li + \frac{4}{{}^{2}He}$  is observed to occur even when very slowmoving neutrons (Mn=1.0087u) strike a boron atom at rest. For a particular reaction in which KE=0, the helium ( $M_{He}$ =4.0026u) is observed to have a speed of 9.30\*106 m/s. Determine i) The KE of the lithium( $M_{Li}=7.0160$ ) [4 Marks]

ii) The Q value of the reaction

[2 Marks]

[2 Marks]

[2 Marks]

# **PHYS 414**

### **QUESTION TWO [20 MARKS]**

a). For a hydrogen atom , determine the the quantum numbers associated with the possible states that correspond to the principal quantum number n=5 [6 Marks]

b) In a certain experiment,  $0.024'' \mu \text{Ci 0f}_{15}^{32} P$  is injected into a medium containing a culture of bacteria. After 2hours the cells are washed and adetector that is 70% efficient (counts 70% 0f emitted rays) records 1440 counts per minute from all the cells. What percentage of the original was taken up by the cells? [4 Marks]

c)Show that half-life of a radioactive material can be expressed as  $t_{\frac{1}{2}} = \frac{0.693}{\lambda}$  Where  $\lambda$ =Decay constant [3 Marks]

| d.An isotope of an element radon has half-life of 8 days, a sample of radon originally c | ontains   |
|------------------------------------------------------------------------------------------|-----------|
| $8.2*10^{16}$ atoms, take one day to be $86 \times 10^3$ seconds, calculate              |           |
| i) the number of radon atoms remaining after 32 days                                     | [2 Marks] |

| ii) the rate of decay of the radon sample after 32 days | [2 Marks] |
|---------------------------------------------------------|-----------|
| e) Define the following                                 | [3 Marks] |
| i) LASER                                                |           |
| ii) MASER                                               |           |
| iii) Phosphorescence                                    |           |

# **QUESTION THREE [20 MARKS]**

| a) State any Four useful applications of radioactivity.                                                                                                                                                 | [4 Marks] |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| <ul> <li>b) Calculate the binding energy in alpha particle (Helium-4) nucleus in MeV. Take<br/>Mass of neutron=1.008665u<br/>Mass of helium nucleus=4.001508u<br/>Mass of a proton=1.007276u</li> </ul> | [3 Marks] |
| c) State and explain briefly FIVE types of stationary power reactors                                                                                                                                    | [5 Marks] |
| d)State Neil Bohr's atomic model postulates                                                                                                                                                             | [3 Marks] |
| e) State five Hazards of radioactivity                                                                                                                                                                  | [5 Marks] |

# **PHYS 414**

# **QUESTION FOUR**

| a).Find the longest and the shortest wavelength photons emitted during Balmer serie hydrogen atom and determine the energy of the shortest wavelength.                                                        | es for the<br>[4 Marks]                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| b. Sketch a graph showing the average binding energy per nucleon as a function of r A .                                                                                                                       | nass number<br>[4 Marks]                    |
| c) Estimate the temperature required for a deuterium-tritium fusion(d-t) to occur ( $rt=1.7$ fm                                                                                                               | rd=1.5fm and<br>[4 Marks]                   |
| d) An animal bone fragment found in archaeological site has a carbon mass of 400g, an activity of 20 decays/s. What is the age of the bone? (ratio of C-14:C -12 when twas alive was $1.3 \times 10^{-12}$ ). | . It registers<br>the animal<br>[4 Marks]   |
| e) Draw a well labeled diagram of a nuclear reactor                                                                                                                                                           | [4 Marks]                                   |
| <b>QUESTION FIVE</b><br>a.Calculate the energy in MeV liberated when helium is produced.<br>i) by fusing two neutrons and two protons<br>$m_p=1.007825u$ , $M_n=1.008665u$                                    | [3 Marks]                                   |
| ii) by fusing two deuterium nuclei ${}_{1}^{2}H=2.014102$<br>iii) Why the difference?                                                                                                                         | [3 Marks]<br>[2 Marks]                      |
| b) Calculate the total binding energy and the average binging energy per nucleon for most common stable isotope of Iron ( $p=1.007825u$ , $n=1.008665u$ and Fe=55.9349u                                       | or <sup>56</sup> <i>Fe</i> the<br>[5 Marks] |
| c) Compare at least THREE properties of alpha, beta and gamma decays.                                                                                                                                         | [3 Marks]                                   |
| d) Describe the kind of decay particle in the following nuclear equations A,B,C and                                                                                                                           | D                                           |
| i) $_{0}^{1}n + {}^{238}_{92}U \rightarrow {}^{239}_{92}U + A$<br>ii) $_{1}^{2}H + {}^{14}_{7}N \rightarrow {}^{12}_{6}C + B$ [4]                                                                             | Marks]                                      |
| iii) ${}^{212}_{83}Bi \rightarrow {}^{208}_{81}Tl + C$                                                                                                                                                        |                                             |
| $iv)_1^2H+_1^2H\rightarrow D$                                                                                                                                                                                 |                                             |
|                                                                                                                                                                                                               |                                             |