

UNIVERSITY

UNIVERSITY EXAMINATIONS
EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE

PHYS 161: HEAT AND THERMODYNAMICS

STREAMS:BED(SCI),BSC
TIME: 2 HOURS
DAY/DATE: MONDAY 4/12/2017
11.30 A.M - 1.30 P.M

INSTRUCTIONS:

- Answer question one in section A and any other two questions in section B
- Do not write on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be no use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

Useful constants
Universal gas constant $\mathrm{R}=8.31 \mathbf{J K}^{-1} \mathbf{m o l}^{-1}$

SECTION A

1. Differentiate between the following pairs of terms
(i) Temperature and heat
(ii) Heat capacity and specific heat capacity.
(iii) Heat engine and reservoir .
(iv) Heat of fusion and specific heat transfer.
(b) Explain the three methods of heat transfer.
(c) State the three law of thermodynamics.
(d) Explain any four thermodynamic processes.
(e) A gas at a pressure of 2.22×10^{5} pa occupies a volume of $0.116 \mathrm{~m}^{3}$ at a temperature of 284 K . If the gas is ideal, how many models are present?
[2marks]
(f) Convert the following temperature units into the units indicated in brackets.
(i) $37^{\circ} \mathrm{C}$ (K)
[1mark]
(ii) $212^{\circ} \mathrm{F}(\mathrm{K})$
(iii) $98^{\circ}(\mathrm{K})$
[1mark]
(g) Two moles of a gas are in a container whose volume can be adjusted with a movable piston. When the volume is 3.2 L , the temperature is 25°. With constant pressure maintained, heat is added to the gas and the piston is allowed to move until the volume is 5.1 L find the final temperature.
2. (a) In each of the following thermometers, what is the thermometric property used to measure temperature?
(i) Mercury -in -glass thermometer [1mark]
(ii) Thermistor thermometer
[1mark]
(iii) Constant volume gas thermometer
[1mark]
(iv) Thermocouple thermometer
[1mark]
(b) Consider a system with a temperature dependent property X such that the temperature θ is a linear function of X given by the function, $X(\theta)=a X$ where a is a constant to be determined. Show that the Celsius scale can be determined by this system where,

$$
\theta \frac{\left(x-x_{f p}\right.}{\left(X_{b p}-X_{f p}\right)} \times 100^{\circ} \mathrm{C} \text { and all the symbols have their usual meanings. [9marks] }
$$

(c) Celsius temperature on a scale determined by a platinum resistance thermometer is called platinum temperature, where R_{i}, R_{s} and R are the resistances of the thermometer at the ice point, the steam (boiling) point, and the platinum temperature θ. The resistance of a certain thermometer is 10Ω at the freezing (ice) point 13.861Ω at the boiling point, and 26.27Ω at the boiling point of sulfur.
(i) Find the temperature at the boiling point of sulfur.
(ii) If the platinum temperature has a value of $284.9^{\circ} \mathrm{C}$, determine the resistance at this temperature as determined by this thermometer.
3. (a) A gas undergoes a series of pressure and volume changes as shown below,

Where P_{f} and P_{i} ios 2×10^{5} and 10^{5} pa respectively while V_{i} and V_{f} is m^{3} and $4 \mathrm{~m}^{3}$ respectively.
(i) Identify the thermodynamic processes labeled $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D 4marks]
(ii) How much work is done by the gas along the path abc.
[3marks]
(iii) How much work is done along the path cda?
[3marks]
(iv) How much heat enters the gas during the full cycle?
[2marks]
(b) Paraffin and water are both liquids. Its requires different amount of heat to rise the temperature of 1 kg of paraffin from $10^{\circ} \mathrm{C}$ to $20^{\circ} \mathrm{C}$ as required by 1 kg of water to raise the same temperature change. Explain?
(c) At what temperature is the Fahrenheit scale reading equal to ;
(i) The reading on the Celsius scale.
[3marks]
(ii) Half that of the Celsius scale.
[2marks]
4. (a) One mole of monoatomic ideal gas is brought through a cycle A to B to C to D to A as shown in the diagram. All processes are performed slowly. Respond to the following in terms of p_{0}, V_{0} and R.
(i) find the temperature at each vertex.
(ii) Find the heat added to the gas for the process A to B .
(iii) Find the work done on the gas for the process C and D .
(iv)Find the heat added to the gas for the process D to A .
(v)Find the change in internal energy for the process B to C.
(b) 25 g of $-10^{\circ} \mathrm{C}$ ice is to be converted into $150^{\circ} \mathrm{C}$ steam (use: heat of fusion of water $=$ $334 \mathrm{j} / \mathrm{g}$, latent heat of vaporization of water $=2257 \mathrm{~J} / \mathrm{g}$, specific heat capacity of ice $=$ $2.09 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$, specific heat capacity of water $=4.2 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$, specific heat capcity of steam $=$ $2.09 \mathrm{~J} / \mathrm{g} /{ }^{\circ} \mathrm{C}$. Determine the heat required to convert the 25 g of -10° ice into $150^{\circ} \mathrm{C}$ steam in joules.
[5marks]
(c) 4.0 moles of argon gas is contained in a cylinder at 300 k . How much heat must be added to the gas to raise its temperature to 600 K at:
(i) Constant volume
[3marks]
(ii) Constant pressure
[2marks]
5. (a) It was unanimously passed by the MCAs of matonguine county that each member to have a modern office in which one of the walls have to be designed t have a permanent wondow made of glass of thickness 0.64 cm and measures 5 mx 4.5 m . During the cold season temperatures outside are $-10^{\circ} \mathrm{C}$. The inside is kept warm by electrical heating and maintained at $20^{\circ} \mathrm{C}$
(i) How much heat is lost per hour through the glass? Use thermal conductivity if glass, $\mathrm{k}=0.8 \mathrm{Js}^{-1} \mathrm{~m}^{-1} \mathrm{C}^{-1}$.
(ii) How much electrical power in W is used to maintain the temperature at $20^{\circ} \mathrm{C}$?
[5marks]
(b) The outer zone of the sun called photosphere is at a temperature $5.8 \times 10^{3} \mathrm{~K}$. Assuming the sun to be spherical body having a radius $\mathrm{R}=700 \times 10^{6} \mathrm{~km}$. Using Stefan law of radiation, calculate the total poer radiated by the sun ($\varepsilon=1$ and $\sigma=5.671 \times 10^{-8}$). [5marks]
(c) A gas is heated and allowed to expand so that it does $1.01 \times 10^{5} \mathrm{~J}$ of work. If $3 \times 10^{5} \mathrm{~J}$ of heat eneters the system during expansion, what is the change in internal enetgy of the gas?
[5marks]

