PHYS 161

CHUKA

UNIVERSITY

TIME: 2 HOURS

11.30 A.M - 1.30 P.M

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE

PHYS 161: HEAT AND THERMODYNAMICS

STREAMS:BED(SCI),BSC

DAY/DATE: MONDAY 4/12/2017

INSTRUCTIONS:

- Answer question one in section A and any other two questions in section B
- Do not write on the question paper
- This is a closed book exam, no reference materials are allowed in the examination room
- There will be no use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

Useful constants

Universal gas constant R = 8.31 J $K^{-1}mol^{-1}$

SECTION A

1. Differentiate between the following pairs of terms

(i) Temperature and heat	[2marks]
(ii) Heat capacity and specific heat capacity.	[2marks]
(iii) Heat engine and reservoir.	[2marks]
(iv) Heat of fusion and specific heat transfer.	[2marks]
(b) Explain the three methods of heat transfer.	[6marks]

(c) State the three law of thermodynamics.	[3marks]
(d) Explain any four thermodynamic processes.	[4marks]
(e) A gas at a pressure of 2.22×10^5 pa occupies a volume of $0.116 m^3$ at a of 284K. If the gas is ideal, how many models are present?	a temperature [2marks]
(f) Convert the following temperature units into the units indicated in brac	kets.
(i) 37°C (K)	[1mark]
(ii) 212°F (K)	[1mark]
(iii) 98° (K)	[1mark]
(g) Two moles of a gas are in a container whose volume can be adjusted	with a

(g) Two moles of a gas are in a container whose volume can be adjusted with a movable piston. When the volume is 3.2 L, the temperature is 25°. With constant pressure maintained, heat is added to the gas and the piston is allowed to move until the volume is 5.1L find the final temperature. [4marks]

2. (a) In each of the following thermometers, what is the thermometric property used to measure temperature?

(i) Mercury –in –glass thermometer	[1mark]
(ii) Thermistor thermometer	[1mark]
(iii) Constant volume gas thermometer	[1mark]
(iv) Thermocouple thermometer	[1mark]

(b) Consider a system with a temperature dependent property X such that the temperature θ is a linear function of X given by the function, $X(\theta) = aX$ where a is a constant to be determined. Show that the Celsius scale can be determined by this system where,

 $\theta \frac{(x-x_{fp})}{(X_{bp}-X_{fp})} \ge 100^{\circ} \text{ C}$ and all the symbols have their usual meanings. [9marks]

(c) Celsius temperature on a scale determined by a platinum resistance thermometer is called platinum temperature, where R_i , R_s and R are the resistances of the thermometer at the ice point, the steam (boiling) point, and the platinum temperature θ . The resistance of a certain thermometer is 10 Ω at the freezing (ice) point 13.861 Ω at the boiling point, and 26.27 Ω at the boiling point of sulfur.

(i) Find the temperature at the boiling point of sulfur. [3marks]

(ii) If the platinum temperature has a value of 284.9° C, determine the resistance at this temperature as determined by this thermometer. [4marks]

3. (a) A gas undergoes a series of pressure and volume changes as shown below,

Where P_f and P_i ios 2 x 10⁵ and 10⁵ pa respectively while V_i and V_f is m^3 and 4 m^3 respectively.

(i) (ii)	Identify the thermodynamic processes labeled A,B,C and D How much work is done by the gas along the path abc.	4marks]
	[3marks]	
(iii)	How much work is done along the path cda?	[3marks]
(iv)	How much heat enters the gas during the full cycle?	[2marks]

(b) Paraffin and water are both liquids. Its requires different amount of heat to rise the temperature of 1kg of paraffin from 10°C to 20°C as required by 1 kg of water to raise the same temperature change. Explain? [2marks]

(c) At what temperature is the Fahrenheit scale reading equal to ;

(i) The reading on the Celsius scale.	[3marks]
(ii) Half that of the Celsius scale.	[2marks]

4. (a) One mole of monoatomic ideal gas is brought through a cycle A to B to C to D to A as shown in the diagram. All processes are performed slowly. Respond to the following in terms of p_0 , V_0 and R.

(i) find the temperature at each vertex.	[2marks]
(ii) Find the heat added to the gas for the process A to B.	[2marks]

PHYS 161

(iii) Find the work done on the gas for the process C and D.	[2marks]
(iv)Find the heat added to the gas for the process D to A.	[2marks]
(v)Find the change in internal energy for the process B to C.	[2marks]

(b) 25g of -10° C ice is to be converted into 150° C steam (use: heat of fusion of water = 334 j/g, latent heat of vaporization of water = 2257 J/g, specific heat capacity of ice = $2.09 \text{ J/g/}^{\circ}$ C, specific heat capacity of water = 4.2 J/g/° C, specific heat capcity of steam = $2.09 \text{ J/g/}^{\circ}$ C. Determine the heat required to convert the 25g of -10° ice into 150° C steam in joules. [5marks]

(c) 4.0 moles of argon gas is contained in a cylinder at 300k. How much heat must be added to the gas to raise its temperature to 600K at:

(i) Constant volume	[3marks]
(ii) Constant pressure	[2marks]

5. (a) It was unanimously passed by the MCAs of matonguine county that each member to have a modern office in which one of the walls have to be designed t have a permanent wondow made of glass of thickness 0.64 cm and measures $5m \times 4.5m$. During the cold season temperatures outside are -10°C. The inside is kept warm by electrical heating and maintained at 20°*C*

(i) How much heat is lost per hour through the glass? Use thermal conductivity if glass, $k = 0.8 \text{ Js}^{-1}m^{-1}C^{-1}$. [5marks]

PHYS 161

(ii) How much electrical power in W is used to maintain the temperature at 20°C? [5marks]

(b) The outer zone of the sun called photosphere is at a temperature 5.8 x 10^3 K. Assuming the sun to be spherical body having a radius R = 700 x 10^6 km. Using Stefan law of radiation, calculate the total poer radiated by the sun ($\varepsilon = 1$ and $\sigma = 5.671 \times 10^{-8}$). [5marks]

(c) A gas is heated and allowed to expand so that it does 1.01×10^5 J of work. If 3×10^5 J of heat eneters the system during expansion, what is the change in internal enetgy of the gas? [5marks]