CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN PHYSICS

PHYS 0111: PRINCIPLES OF PHYSICS

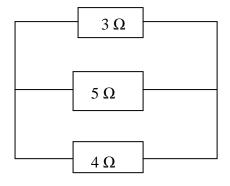
STREAMS: DIP (PHYSICS)

TIME: 2 HOURS

DAY/DATE: MONDAY 11/12/017

11.30 A.M-1.30 P.M

INSTRUCTIONS.


• Answer question one and any other two questions

QUESTION ONE (30MKS)

1 a) i) State the two types of errors	[2mks]	
ii) Explain how to minimise the errors above	[2mks]	
b) i) Define refraction of light	[2mks]	
ii) A ray of light travelling through a liquid of absolute refractive index 1.4 is incident on		
the plane surface of a Perspex block at an angle of 55°. Calculate the angle of refraction in the		
Perspex if it has an absolute refractive index 1.5	[4mks]	
c) i) Define the following		
Displacement		
Velocity		
Acceleration	[3mks]	
ii) A body of mass 50 kg initially moving at 20 m/s accelerates to a velocity of 30 m/s in 5		
seconds. Calculate the force acting on the body.	[3mks]	
d) A charge of quantity 9×10^{-6} C flows through a conductor in 20 seconds, calculate the		
amount of current in the conductor	[3mks]	

e) State Newton's laws of motion

f) i) Obtain the effective resistance in the figure below

[3mks]

[3mks]

ii) If a voltage of 12 V is applied across the arrangement, calculate the total current the circ	uit
[3m]	ks]

g) Differentiate between heat capacity and specific heat capacity [2mks]

QUESTION TWO (20MKS)

2 a) i) Define the following terms

Principle focus

Focal length

ii) Show that image formed by a plane mirror is as far behind the mirror as the object is in front [6mks]

b) An object is placed 20 cm from a concave mirror of focal length 15 cm, show using ray construction the location of the image, describe the characteristics of the image [6mks]

c) By applying mirror formula, find the position of an object that gives an image located 15 cm in front of a concave mirror of focal length 10 cm. [6mks]

QUESTION THREE (20MKS)

3 a)Define specific latent heat of fusion [2mks] b) 5 kg of ice at a temperature of -4° C is converted to water at a temperature of 75° C. Calculate the quantity of heat used. (Take specific heat capacity of ice 2100 J/kg/k, specific latent heat of fusion of ice 1.7×10^5 J/Kg, specific heat capacity of water 4200 J/kg/k)

[7mks]
[2mks]
[6mks]
[3mks]

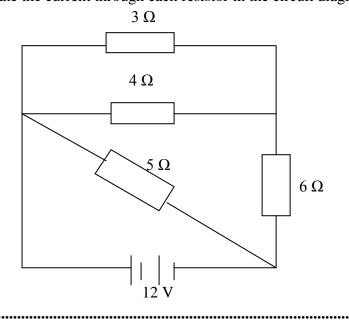
QUESTION FOUR (20MKS)

4a) Explain what is meant by refraction

b) A block of glass of refractive index 1.52 is surrounded by air. In an experiment, a beam of light is projected through the glass and strikes one of the faces (internally) at an angle of 30°

i) Calculate the angle of refraction ii) Show the refracted ray on the diagram marking the angle of refraction [3mks] [2mks]

[1mark]


[2mks]

c) the experiment is repeated with a film of water on the face of the block	
i)calculate the angle of refraction for the light passing into the water	[3mks]
ii) Calculate the angle of refraction for the light passing in to the air from the	ne water and
comment on your answer	[3mks]
iii) Continue the ray in the diagram, showing its path through the water and into t	the air
	[3mks]
d) i) State any three types of lenses	[3mks]
ii) Explain how short sightedness eye defect is corrected	[2mks]

QUESTION FIVE (20MKS)

5 a) Starting from Newton's second law of motion show that

F=ma	[3mks]
b) Define the following	
Electric potential	
Electric current	[2mks]
c) State Kirchhoff's law	[2mks]
d) With the aid of a diagram, describe the use of diodes in full wave rectification	[5mks]
e) Calculate the current through each resistor in the circuit diagram below	[8mks]

