UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DIPLOMA IN PHYSICS

PHYS 0111: PRINCIPLES OF PHYSICS

STREAMS: DIP (PHYSICS)
TIME: 2 HOURS
DAY/DATE: MONDAY 11/12/017
11.30 A.M-1.30 P.M

INSTRUCTIONS.

- Answer question one and any other two questions

QUESTION ONE (30MKS)

1 a) i) State the two types of errors

ii) Explain how to minimise the errors above
b) i) Define refraction of light
ii) A ray of light travelling through a liquid of absolute refractive index 1.4 is incident on the plane surface of a Perspex block at an angle of 55°. Calculate the angle of refraction in the Perspex if it has an absolute refractive index 1.5
c) i) Define the following

Displacement
Velocity
Acceleration
ii) A body of mass 50 kg initially moving at $20 \mathrm{~m} / \mathrm{s}$ accelerates to a velocity of $30 \mathrm{~m} / \mathrm{s}$ in 5 seconds. Calculate the force acting on the body.
d) A charge of quantity $9 \times 10^{-6} \mathrm{C}$ flows through a conductor in 20 seconds, calculate the amount of current in the conductor
e) State Newton's laws of motion
f) i) Obtain the effective resistance in the figure below

ii) If a voltage of 12 V is applied across the arrangement, calculate the total current the circuit
g) Differentiate between heat capacity and specific heat capacity

QUESTION TWO (20MKS)

2 a) i) Define the following terms
Principle focus
Focal length
ii) Show that image formed by a plane mirror is as far behind the mirror as the object is in front
b) An object is placed 20 cm from a concave mirror of focal length 15 cm , show using ray construction the location of the image, describe the characteristics of the image
c) By applying mirror formula, find the position of an object that gives an image located 15 cm in front of a concave mirror of focal length 10 cm .

QUESTION THREE (20MKS)

3 a)Define specific latent heat of fusion
[2mks]
b) 5 kg of ice at a temperature of $-4^{0} \mathrm{C}$ is converted to water at a temperature of $75^{\circ} \mathrm{C}$. Calculate the quantity of heat used. (Take specific heat capacity of ice $2100 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$, specific latent heat of fusion of ice $1.7 \times 10^{5} \mathrm{~J} / \mathrm{Kg}$, specific heat capacity of water $4200 \mathrm{~J} / \mathrm{kg} / \mathrm{k}$)
c i) Explain why heat transfer is faster in metal conductors than in non metals [2mks]
ii) Explain the three modes of heat transfer
d) Differentiate between evaporation and boiling

QUESTION FOUR (20MKS)

4a) Explain what is meant by refraction
b) A block of glass of refractive index 1.52 is surrounded by air. In an experiment, a beam of light is projected through the glass and strikes one of the faces (internally) at an angle of 30°

i) Calculate the angle of refraction [3mks]
ii) Show the refracted ray on the diagram marking the angle of refraction
c) the experiment is repeated with a film of water on the face of the block i)calculate the angle of refraction for the light passing into the water
ii) Calculate the angle of refraction for the light passing in to the air from the water and comment on your answer
iii) Continue the ray in the diagram, showing its path through the water and into the air
d) i) State any three types of lenses
ii) Explain how short sightedness eye defect is corrected

QUESTION FIVE (20MKS)

5 a) Starting from Newton's second law of motion show that

$$
\begin{equation*}
\mathrm{F}=\mathrm{ma} \tag{3mks}
\end{equation*}
$$

b) Define the following

Electric potential
Electric current
[2mks]
c) State Kirchhoff's law
d) With the aid of a diagram, describe the use of diodes in full wave rectification [5mks]
e) Calculate the current through each resistor in the circuit diagram below

