CHUKA

UNIVERSITY EXAMINATIONS

EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF

PHYS 313: ELECTRICITY AND MAGNETISM II

STREAMS:
TIME: 2 HOURS
DAY/DATE: MONDAY 4/12/2017
2.30 P.M - 4.30 P.M

INSTRUCTIONS:

- Answer question one and any other two questions

1. (a) State any three applications of Gauss's law.
2. [3marks]
(b) Derive an expression for electric potential V of a point charge Q . [4marks]
(c) Calculate the potential at a point 0.05 m inside a charged sphere of radius 0.1 m and volume charge density $2.4 \times 10^{-7} \mathrm{C} / \mathrm{m}^{3}$.
(d) Distinguish between a conductor and a dielectric .
[2marks]
(e) Derive an expression for the work done in changing the orientation of a dipole in electric field E from 90° to θ°.
[4marks]
(f) Derive Gauss's law in the form
$\int_{S} E \cdot d a=\frac{Q}{\epsilon 0}$
[5marks]
(g) Write down Maxwell's equations of electromagnetism in their general differential form in a vacuum.
[4marks]
(h) Explain the reason as to why charges only reside on the surface of a conductor.
[3marks]
3. (a) Show that potential due to the dipoles at a point P is given by $V_{p}=\frac{Q a \cos \varphi}{4 \pi \in \pi r 2}$
[7marks]
(b) From the equation for potential due to a dipole at point P , show thata the electric field component in the Z -direction is given by
$E_{Z}=\frac{p}{4 \pi \varepsilon 0}\left(\frac{3 \cos ^{2} \theta-1}{r^{3}}\right)$
[10marks]
(c) Explain any three types of filters.
4. (a) Laplace equation in Cartesian rectangular coordinates is
$\frac{\sigma 2 v}{\sigma x 2}+\frac{\sigma 2 v}{\sigma y 2}+\frac{\sigma 2 v}{\sigma z 2}=0$
Assuming that the solution of this equation is a product of three functions which are separately functions x, y and z . Show the mos general form of this solution. [9marks]
(b) Derive an expression for electric field E at a point P outside a sphere of radius R and uniform volume change density p .
[7marks]
(c) Calculate the electric field at a point 0.001 m from the surface of a charged sphere of radius 0.05 m and volume change density is given by.
$\rho_{b}=-\nabla . P$
(c) Derive the equation of continuity.
5. (a) Starring from sphere's law, derive Maxwell electromagnetic equation . [8marks]
(b) For a series arrangement of R, L and C circuit and given that $\mathrm{R}=3 \times 10^{5} \Omega, \mathrm{~L}=10^{-3}$ H and $\mathrm{C}=60 \mathrm{PF}$. Calculate:
(i) The total current in each arm when a voltage of $20 \mathrm{~V} \mathrm{r.m.s} \mathrm{at} \mathrm{a} \mathrm{frequency} \mathrm{of} 0.1 \mathrm{MHZ}$ is applied.
(ii) The phrase of the total current drawn from the generator.
(c) Define polarization.
