CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF SCIENCE IN COMPUTER SCIENCE

COMP 304: COMPONENTS AND DESIGN TECHNIQUES FOR DIGITAL SYSTEMS

STREAMS:
TIME: 2 HOURS
DAY/DATE: WEDNESDAY 6/12/2017
8.30 A.M - 10.30 A.M

INSTRUCTIONS:

- Answer all questions in section A and any other two questions from section B.
- No Reference Material is allowed in the exam Room.
- All Mobile phones should be switched off in the exam room.

SECTION A (COMPULSORY)

QUESTION 1(COMPULSORY) [30 MARKS]
a) Using a TTL diagram, explain the operation of a NAND gate.
b) Using "ieee.std_logic_1164.all" library, write aVHDL program of a J-K flip flop.
(5marks)
c) With reference to counters, answer the following questions.
i. With the help of a digital circuit diagram, explain how a digital upwards counter functions
ii. Draw the FSM diagram of the digital upward counter in (i) above (3marks)
d) Use Karnaugh maps SOP to minimize the following circuit.

$$
\mathrm{Z}=\overline{\mathrm{A}}+\mathrm{AB}+\mathrm{A} \overline{\mathrm{~B}} \mathrm{C}+\mathrm{A} \overline{\mathrm{~B}}+\mathrm{C}
$$

e) Below is a digital circuit. Use it to answer the questions below: -

i) Simplify the above circuit (show the simplification process)
(3marks)
ii) Draw the simplified circuit using NAND gates only
iii) With the help of a diagram, illustrate how you would implement the simplified circuit using 7400 series IC shown below

SECTION B (Answer two question from this section)

QUESTION 2 [20 MARKS]

a) A certain digital device could count number 1 up to 16 in binary numbers. Draw a circuit which will enable this device give output of logic 1 only where there are three consecutive ones. i.e. 0111,1110 etc.
b) Use Demorgan theorem to prove that the following circuits are the same

$$
\text { i) } \quad \mathrm{A}+\mathrm{AB}=\mathrm{A}
$$

ii)

c) With regard to the principle of universality of NOR gates, using sketch diagrams, show how NOR gates could be used as: -
i) AND gate
ii) NAND gate

QUESTION 3 [20 MARKS]

a) With reference to decoders
i) Draw a circuit diagram of an8 to 3 encoder using INVERTERs and gates only
ii) Draw a truth table of the above encorder
iii) Using "ieee.std_logic_1164.all" library, write a VHDL program of the decoder. (6marks)
b) Using a diagram, explain the operation of a full adder

QUESTION 4 [20 MARKS]

a) With the help of a digital circuit diagram, explain how a decimal to binary encoder functions
b) Below is a simple door open and lock FSM, explain how it functions and draw its state transition table

c) Explain the operation of an SR flip flop

QUESTION 5 [20 MARKS]

a) A certain student was tasked with designing a full adder which follows the following states

Since the carry variable can either be 1 or 0 . When the circuit is in the state where carry $=0$, the relationship between the inputs A and B and the output S is such that: if $A B=00$ then $S=$ 0 ; if $A B=01$ then $S=1$; if $A B=10$ then $S=1$; and if $A B=11$ then $S=0$. When the circuit
is in the state where carry $=1$, it also follows that: if $A B=00$ then $S=1$; if $A B=01$ then $S=$ 0 ; if $A B=10$ then $S=0$; and if $A B=11$ then $S=1$.
i) Draw an FSM diagram of the above scenario
(6marks)
ii) Draw a state transition table of the above FSM
b) Using a Boolean, write an example of the following laws: -

i)	Dominance	$(2$ marks $)$
ii)	Commutative	$(2$ marks $)$
iii)	Idempotent	$(2$ marks $)$
iv)	involution	$(2$ marks $)$

