**COMP 303** 





**UNIVERSITY** 

# **UNIVERSITY EXAMINATIONS**

# THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE COMPUTER SCIENCE / BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

### **COMP 303: THEORY OF COMPUTATION**

STREAMS: BSC COMPUTER SCIENCE / BSC APPLIED COMPUTER SCIENCE TIME: 2 HOURS

# DAY/DATE:MONDAY 11/12/2017

2.30 P.M – 4.30 P.M

**INSTRUCTIONS:** 

- Answer Question ONE and any other TWO questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

## **SECTION A**

## ANSWER <u>ALL</u> QUESTIONS IN THIS SECTION

#### **QUESTION ONE [30 MARKS]**

- a) Identify and explain any three areas that benefit from Context Free Grammars . [6 Marks]
- b) Using appropriate diagrams, differentiate between Deterministic Finite Automaton and Non Deterministic Finite Automaton. [6 Marks]
- c) Describe the features of a Turing Machine. [3 marks]
- d) Giving an example for each differentiate between a set and a tuple [4 Marks]

- e) Present the Mathematical definition of Start and Final States of DFAs. Explain each definition. [6 Marks]
- f) Briefly explain how Mathematicians contributed to the definition of the Computing Algorithm. [5 Marks]

#### **SECTION B**

#### ANSWER ANY TWO QUESTIONS FROM THIS SECTION

#### **QUESTION TWO [20 MARKS]**

- a) An Automatic door is one real life implementation of Finite Automaton computational model.
  - i. Explain the workings of an Automatic door. [2 Marks]
  - ii. Present the State diagram of such an Automatic door. [3 Marks]
  - iii. Formally define the State diagram of the Automatic door. [5 Marks]
- b) Explain how you would apply knowledge in the following to your computing profession:

| i.   | Regular Expressions | [3 Marks] |
|------|---------------------|-----------|
| ii.  | Finite Automaton    | [2 Marks] |
| iii. | Pumping Lemma       | [2 Marks] |
| iv.  | Kleene's theorem    | [3 Marks] |

#### **QUESTION THREE [20 MARKS]**

a) A pushdown Automaton PDA P is presented as follows:



Making reference to the Push Down Automaton above:

| a) | Define the language accepted by PDA P | [4 Marks]  |
|----|---------------------------------------|------------|
| b) | Discuss the computation of PDA P      | [10 Marks] |

c) Describe the relationship between PDA and other models of computation. [6 Marks]

#### **QUESTION FOUR [20 MARKS]**

- a) Explain the relationship between cryptography and the theory of complexity. [4 Marks]
- b) Compare and contrast Push Down Automata to the following computation models:

| i.   | DFA             | [2 Marks] |
|------|-----------------|-----------|
| ii.  | NFA             | [2 Marks] |
| iii. | Turing Machines | [2 Marks] |

c) Consider the context-free grammar  $G = (V_1 \Sigma_1 R_1 S)$ , where  $V = \{A, B\}, \Sigma = \{0, 1\}$ , A is the start variable, and R consists of the rules

B →00|∈

Convert this grammar to a Context-Free Grammar in Chomsky Normal Form whose language is the same as that of G. [10 Marks]

#### **QUESTION FIVE [20 MARKS]**

a) Assume we have two regular languages L (A) = {boy, girl} and L (B) = {good, bad}. Show the results of the regular operations below on the two languages:

| i. | Conjunction of | f Language L( | A) and | Language L(B | ) [2 Marks] |
|----|----------------|---------------|--------|--------------|-------------|
|----|----------------|---------------|--------|--------------|-------------|

- ii. Star of Language L(B) [2 Marks]
- b) Describe the relationship between a computer virus and the theory of computability. [7 Marks]
- c) For each of the following languages, construct a DFA that accepts the language. In all cases, the alphabet is {0, 1}.

| i.   | { w   the length of w is divisible by three } | [3 Marks] |
|------|-----------------------------------------------|-----------|
| ii.  | { w   110 is not a substring of w}            | [3 Marks] |
| iii. | { w   w contains at least five 1s}            | [3 Marks] |

\_\_\_\_\_

A→BAB|B|∈