CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

THIRD YEAR FIRST SEMESTER EXAMINATION FOR THE AWARD OF BACHELOR OF SCIENCE COMPUTER SCIENCE / BACHELOR OF SCIENCE APPLIED COMPUTER SCIENCE

COMP 303: THEORY OF COMPUTATION
STREAMS: BSC COMPUTER SCIENCE / BSC APPLIED COMPUTER SCIENCE TIME: 2 HOURS

DAY/DATE:MONDAY 11/12/2017
2.30 P.M - 4.30 P.M

INSTRUCTIONS:

- Answer Question ONE and any other TWO questions.
- Diagrams should be used whenever they are relevant to support an answer.
- Sketch maps and diagrams may be used whenever they help to illustrate your answer
- Do not write anything on the question paper
- This is a closed book exam, No reference materials are allowed in the examination room
- There will be No use of mobile phones or any other unauthorized materials
- Write your answers legibly and use your time wisely

SECTION A

ANSWER ALL QUESTIONS IN THIS SECTION

QUESTION ONE [30 MARKS]
a) Identify and explain any three areas that benefit from Context Free Grammars .
[6 Marks]
b) Using appropriate diagrams, differentiate between Deterministic Finite Automaton and Non Deterministic Finite Automaton.
[6 Marks]
c) Describe the features of a Turing Machine.
d) Giving an example for each differentiate between a set and a tuple [4 Marks]
e) Present the Mathematical definition of Start and Final States of DFAs. Explain each definition.
f) Briefly explain how Mathematicians contributed to the definition of the Computing Algorithm.

SECTION B

ANSWER ANY TWO QUESTIONS FROM THIS SECTION

QUESTION TWO [20 MARKS]

a) An Automatic door is one real life implementation of Finite Automaton computational model.
i. Explain the workings of an Automatic door.
ii. Present the State diagram of such an Automatic door.
iii. Formally define the State diagram of the Automatic door.
b) Explain how you would apply knowledge in the following to your computing profession:
i. Regular Expressions [3 Marks]
ii. Finite Automaton
iii. Pumping Lemma
iv. Kleene's theorem

QUESTION THREE [20 MARKS]

a) A pushdown Automaton PDA P is presented as follows:

Making reference to the Push Down Automaton above:
a) Define the language accepted by PDA P [4 Marks]
b) Discuss the computation of PDA P
c) Describe the relationship between PDA and other models of computation.
[6 Marks]

QUESTION FOUR [20 MARKS]

a) Explain the relationship between cryptography and the theory of complexity.
[4 Marks]
b) Compare and contrast Push Down Automata to the following computation models:
i. DFA
[2 Marks]
ii. NFA
[2 Marks]
iii. Turing Machines
[2 Marks]
c) Consider the context-free grammar $\mathrm{G}=\left(V_{1} \Sigma_{1} R_{1} S\right)$, where $\mathrm{V}=\{\mathrm{A}, \mathrm{B}\}, \Sigma=\{0,1\}$, A is the start variable, and R consists of the rules

$$
\begin{aligned}
& \mathrm{A} \rightarrow \mathrm{BAB}|\mathrm{~B}| \epsilon \\
& \mathrm{B} \rightarrow 00 \mid \mathrm{E}
\end{aligned}
$$

Convert this grammar to a Context-Free Grammar in Chomsky Normal Form whose language is the same as that of G.

QUESTION FIVE [20 MARKS]

a) Assume we have two regular languages $\mathrm{L}(\mathrm{A})=\{$ boy, $\operatorname{girl}\}$ and $\mathrm{L}(\mathrm{B})=$ \{good, bad\}. Show the results of the regular operations below on the two languages:
i. Conjunction of Language $L(A)$ and Language $L(B)$
ii. Star of Language $\mathrm{L}(\mathrm{B})$
b) Describe the relationship between a computer virus and the theory of computability.
c) For each of the following languages, construct a DFA that accepts the language. In all cases, the alphabet is $\{0,1\}$.
i. $\quad\{\mathrm{w} \mid$ the length of w is divisible by three $\}$
[3 Marks]
ii. $\quad\{\mathrm{w} \mid 110$ is not a substring of w$\}$
iii. $\quad\{\mathrm{w} \mid \mathrm{w}$ contains at least five 1 s$\}$
[3 Marks]

