CHUKA

UNIVERSITY

UNIVERSITY EXAMINATIONS

FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE

CHEM 425: ELECTROCHEMISTRY STREAMS: BED (SCI), BSC

TIME: 2 HOURS

[4 marks]

[3 marks]

DAY/DATE: TUESDAY 05/12/2017 8.30 A.M. – 10.30 A.M. INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS QUESTION ONE (30 MARKS)

- (a) Differentiate between decomposition potential and discharge potential. [4 marks]
- (b) (i) Calculate the equilibrium constants for the following reaction at 25° C

$$Pb + Sn^{2+} \rightleftharpoons Pb^{2+} + Sn$$

Given:

$$Sn^{2+} + 2e^- \rightleftharpoons Sn E^o(volts) = -0.136 V$$

$$Pb^{2+} + 2e^- \rightleftharpoons Sn E^o(volts) = -0.126 V$$

F = charge on one mole of electrons = 96, 500 coulombs

$$R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$$

(ii) The EMF of the cell cd/cdcl₂. $2\frac{1}{2}$ H₂O/ satd sol/AgCl/Ag is found to be 0.6753 volts at 25°C.Temperature coefficient of EMF in this case is $-6.5x10^{-4}$ volt – degre⁻¹. Calculate ΔG , ΔH , ΔS for cell reaction.

Where ΔG = free energy change ΔS = change in entropy ΔH = change in enthalpy {F = 96500 C

- (iii) List the advantages and disadvantages of Quinhydrone electrode. [2 marks]
- (iv) Calculate the pH of the solution from the following potential data Cell SCE// $H^+(a_1)$, Quinhydrone/ Pt

 E_{cell} at 25°C = 0.102 Volt

 $E^{\circ}Quinhydron at 25^{\circ}C = 0.700 \text{ volt}$

 $\{F = 96500 C\}$ ESCE at 25°C = 0.242 volts [3 marks]

- (v) For the electrode concentration cell: $Zn(x_1) - Hg/ZnSO_4/Zn(x_2) - Hg$ E at 298 k is 0.0594V. x_1 and x_2 the mole fractions of Zn in Hg are $3x10^{-2}$ and $3x10^{-4}$ respectively. Calculate the ratio of the activity coefficient of Zn (on mole fraction basis) in the two a malgams. [1 mark] (c) (i) Discus the principle underlying the conductometric titrations. $[1\frac{1}{2} \text{ marks}]$ Sketch schematically the titration curve for the titration of a weak acid by a strong (ii) base. $[1\frac{1}{2} \text{ marks}]$ (iii) State Kohlrausch law of independent migration of ions. $\left[\frac{1}{2} \text{ mark}\right]$ (iv) At a certain temperature the saturated solution of AgCl has a specific conductance of $1.12 \times 10^{-6} \Omega^{-1} \text{ cm}^{-1}$ (after correction for the specific conductance of water). The $\lambda^{\circ} Ag^{+}$ and $\lambda^{\circ} cl^{-}$ are 54.3 and 65.6 Ω^{-1} cm² equiv⁻¹ respectively at this temperature. Find the solubility product of $AgCl{AgCl} = 143.5$, assume the degree of dissociation for the saturated solutions of precipitated salts is equal to unity). $[2\frac{1}{2} \text{ marks}]$ (v) Draw rough sketches to show how molar conductance vary during the progressive dilution of solution of: Strong electrolyte [¹/₂ marks] (I) (II) Weak electrolyte $\left[\frac{1}{2} \text{ marks}\right]$
 - (vi) Explain the graphs obtained in QV (I) and (II) [3 marks]
 - (vii)In conductivity cell 0.01 NKCl
solutiongave a resistance of 225.0 Ohms while a
0.01N solution of HCl gave a resistance of 77.1 Ω^{-1} cm-1. Conductivity of Kcl
solution is 0.00141 Ω^{-1} cm⁻¹. Calculate the conductance, equivalent conductance
and molecular conductance of the Hcl solution.[2 marks]

QUESTION TWO

(a) Derive an equation for calculating the magnitude of liquid junction potential for the concentration cell with transference given below
Ag/AgCl/HCl(a₂): Hcl (a₁)/Agcl/Ag a₂>a₁, comment on the equation obtained.

[12 marks]

(b) The EMF of the cell with transference Ag/Agcl/Hcl $(a_{\pm}=0.01751)$ //HCl $(a_{\pm}=0.00904)$ /Agcl/Ag at 298K is 0.02807V.

The corresponding cell without transference has an EMF of 0.01696v. Calculate the transference number of H^+ and the value of liquid junction potential.

 ${F = 9.64853x10^4 C mol^{-1}, R = 8.31447 J K^{-1}Mol^{-1}, \theta^{\circ}c = TK - 273.15}.$

[2 marks]

- (c) (i) Given that the standard potential of the Calomel electrode is 0.268 V and that of the Hg/Hg_2^{2+} electrode is 0.789V. Calculate K_SP for Calomel (Hg_2Cl_2), for 298K. [4 marks]
 - (ii) From the formation constant of $Ni(glycine)_2$ plus E° for the $Ni^{2+} + /Ni(s)$ couple $Ni^{2+} + 2 glycine^- \Leftrightarrow Ni(glycine)_2 K = B_2 = 1.2x10^{11}$

$$Ni^{2+} + 2e^{-} \rightleftharpoons Ni(s) E = -0.236V$$
 deduce the value of E° for the reaction.
 $Ni(glycine)_2 + 2e^{-} = Ni(s) + 2 glycine^{-}$ [2 marks]

QUESTION THREE (20 MARKS)

- (a) (i) Discuss the principle involved in the titration of silver nitrate solution with sodium chloride solution usingpotentiometric technique. [6 marks]
 - (ii) A 100 ml solution containing 0.1 MNaCl was titrated with 0.1 M AgNO₃ and the voltage of cell shown in figure below was monitored. The equivalence volume is $V_c = 100$ ml. calculate the voltage after the addition of:
 - (I) 65.0ml of AgNO₃ [3 marks]
 - (II) 135.0ml of AgNO₃ [2 marks]

- (b) (i) Explain how the contribution of the analyte to the migration current and convection current is made negligible during experimental involving polarography. [3 marks]
 - (ii) Figure below shows cyclic voltammogram for a solution that is 6.0 mM in K₃ Fe (CN)₆ and 1.0 M in KNO₃ using polished stationary platinum electrode as working electrode and SCE as reference electrode.

(I) Explain why a tiny anodic current was observed at the initial potential of +0.8V which immediately decreased to zero as the scan continued.

[½ mark]

(II) Explain why the current was not observed between a potential of +0.7 and +0.4 V. [1/2 mark]

		(III) Give reason to why when the potential became less positive than $+0.4$ V, a				
			cathodic current start	ted to develop.	[1 mark]	
		(IV)	Discuss various proc	ess occurring in region B D, D	OF and FJ.[4 marks]	
QUESTION FOUR (20 MARKS)						
(a)	(i)	Explain how chronopotentiometry can be distinguished from constant – current				
		coulometric analysis and coulometric titrimetry. [1 mark]				
	(ii)	Briefl	y discuss the working	principle of chronopotentiome	try. [8 marks]	
(b)	Differ	fferentiate between controlled potential (Potentiostic) coulometry and controlled				
	curren	current (amperostatic) coulometry. [2 ¹ /2 marks]				
(c)	Expla	Explain briefly how chlorine can be detected using amperometry. [3 ¹ / ₂ marks]				
(d)	State	te five characteristics of overvoltage caused by charge transfer polarization.				
					[21/2 marks]	
(e)	(i)	The following cell has a resistance of 4.00Ω . Calculate the potential when 1E is				
		producing a current of 0.100 A				
		Cd/cd ²⁺ (0.01 M) // Cu ²⁺ (0.01M) /Cu				
		Cu ²⁺	$+2e \rightleftharpoons Cu(s)$	$E^{\circ}at \ 25^{\circ}C = +0.337$		
		Cd^{2+}	$+2e^{-} \rightleftharpoons Cd(s)$	$E^{\circ}at \ 25^{\circ}C = -0.403$	[1½ marks]	
	(ii)	Calculate the potential required to generate a current of 0.1 A in the reverse				
		direction in the cell shown in question e(i).			[1 mark]	
