CHUKA

UNIVERSITY EXAMINATIONS
FOURTH YEAR EXAMINATION FOR THE AWARD OF DEGREE OF BACHELOR OF EDUCATION (SCIENCE), BACHELOR OF SCIENCE
CHEM 425: ELECTROCHEMISTRY
STREAMS: BED (SCI), BSC
TIME: 2 HOURS

DAY/DATE: TUESDAY 05/12/2017

8.30 A.M. - 10.30 A.M.

INSTRUCTIONS: ANSWER QUESTION ONE AND ANY OTHER TWO QUESTIONS

QUESTION ONE (30 MARKS)
(a) Differentiate between decomposition potential and discharge potential. [4 marks]
(b) (i) Calculate the equilibrium constants for the following reaction at $25^{\circ} \mathrm{C}$

$$
\mathrm{Pb}+\mathrm{Sn}^{2+} \rightleftharpoons \mathrm{Pb}^{2+}+\mathrm{Sn}
$$

Given:
$\mathrm{Sn}^{2+}+2 \mathrm{e}^{-} \rightleftharpoons \operatorname{Sn} E^{o}($ volts $)=-0.136 \mathrm{~V}$
$\mathrm{Pb}^{2+}+2 e^{-} \rightleftharpoons \operatorname{Sn} E^{o}($ volts $)=-0.126 \mathrm{~V}$
$\mathrm{F}=$ charge on one mole of electrons $=96,500$ coulombs
$\mathrm{R}=8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
(ii) The EMF of the cell cd/cdcl $2.21 / 2 \mathrm{H}_{2} \mathrm{O} / \mathrm{satd} \mathrm{sol} / \mathrm{AgCl} / \mathrm{Ag}$ is found to be 0.6753 volts at $25^{\circ} \mathrm{C}$.Temperature coefficient of EMF in this case is -6.5×10^{-4} volt degre ${ }^{-1}$. Calculate $\Delta G, \Delta H, \Delta S$ for cell reaction.
Where
$\Delta G=$ free energy change
$\Delta S=$ change in entropy
$\Delta H=$ change in enthalpy
$\{F=96500 C$
(iii) List the advantages and disadvantages of Quinhydrone electrode. [2 marks]
(iv) Calculate the pH of the solution from the following potential data

Cell SCE// $\mathrm{H}^{+}\left(\mathrm{a}_{1}\right)$, Quinhydrone/ Pt
$\mathrm{E}_{\text {cell }}$ at $25^{\circ} \mathrm{C}=0.102 \mathrm{Volt}$
E° Quinhydron at $25^{\circ} \mathrm{C}=0.700$ volt

$$
\{\mathrm{F}=96500 \mathrm{C}\} \mathrm{ESCE} \text { at } 25^{\circ} \mathrm{C}=0.242 \text { volts }
$$

CHEM 425

(v) For the electrode concentration cell:
$\mathrm{Zn}\left(\mathrm{x}_{1}\right)-\mathrm{Hg} / \mathrm{ZnSO}_{4} / \mathrm{Zn}\left(\mathrm{x}_{2}\right)-\mathrm{Hg}$
E at 298 k is $0.0594 \mathrm{~V} . \mathrm{x}_{1}$ and x_{2} the mole fractions of Zn in Hg are 3×10^{-2} and 3×10^{-4} respectively. Calculate the ratio of the activity coefficient of Zn (on mole fraction basis) in the two a malgams.
[1 mark]
(c) (i) Discus the principle underlying the conductometric titrations
[11/2 marks]
(ii) Sketch schematically the titration curve for the titration of a weak acid by a strong base.
[1 $1 / 2$ marks]
(iii) State Kohlrausch law of independent migration of ions.
(iv) At a certain temperature the saturated solution of AgCl has a specific conductance of $1.12 \times 10^{-6} \Omega^{-1} \mathrm{~cm}^{-1}$ (after correction for the specific conductance of water). The $\lambda^{\circ} \mathrm{Ag}^{+}$and $\lambda^{\circ} \mathrm{cl}^{-}$are 54.3 and $65.6 \Omega^{-1} \mathrm{~cm}^{2}$ equiv $^{-1}$ respectively at this temperature. Find the solubility product of $\mathrm{AgCl}\{\mathrm{AgCl}=143.5$, assume the degree of dissociation for the saturated solutions of precipitated salts is equal to unity).
[$2 \frac{1}{2}$ marks]
(v) Draw rough sketches to show how molar conductance vary during the progressive dilution of solution of:
(I) Strong electrolyte
[$1 / 2$ marks]
(II) Weak electrolyte
[$1 / 2$ marks]
(vi) Explain the graphs obtained in QV (I) and (II)
[3 marks]
(vii) In conductivity cell $0.01 \mathrm{NKClsolutiongave} \mathrm{a} \mathrm{resistance} \mathrm{of} \mathrm{225.0} \mathrm{Ohms} \mathrm{while} \mathrm{a}$ 0.01 N solution of HCl gave a resistance of $77.1 \Omega^{-1} \mathrm{~cm}-1$. Conductivity of Kcl solution is $0.00141 \Omega^{-1} \mathrm{~cm}^{-1}$. . Calculate the conductance, equivalent conductance and molecular conductance of the Hcl solution.
[2 marks]

QUESTION TWO

(a) Derive an equation for calculating the magnitude of liquid junction potential for the concentration cell with transference given below $\mathrm{Ag} / \mathrm{AgCl} / \mathrm{HCl}\left(\mathrm{a}_{2}\right): \mathrm{Hcl}\left(\mathrm{a}_{1}\right) / \mathrm{Agcl} / \mathrm{Ag} \mathrm{a} \mathrm{a}_{2}>\mathrm{a}_{1}$, comment on the equation obtained.
[12 marks]
(b) The EMF of the cell with transference $\mathrm{Ag} / \mathrm{Agcl} / \mathrm{Hcl}\left(a_{ \pm}=0.01751\right) / / \mathrm{HCl}$ $\left(a_{ \pm}=0.00904\right) / \mathrm{Agcl} / \mathrm{Ag}$ at 298 K is 0.02807 V .

CHEM 425

The corresponding cell without transference has an EMF of 0.01696v. Calculate the transference number of H^{+}and the value of liquid junction potential.

$$
\left\{F=9.64853 \times 10^{4} \mathrm{C} \mathrm{~mol}^{-1}, R=8.31447 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{Mol}^{-1}, \theta^{\circ} \mathrm{c}=T K-273.15\right\}
$$

[2 marks]
(c) (i) Given that the standard potential of the Calomel electrode is 0.268 V and that of the $\mathrm{Hg} / \mathrm{Hg}_{2}^{2+}$ electrode is 0.789 V . Calculate $K_{S} P$ for Calomel $\left(\mathrm{Hg}_{2} \mathrm{Cl}_{2}\right)$, for 298K.
[4 marks]
(ii) From the formation constant of $\mathrm{Ni}(\text { glycine })_{2}$ plus E° for the $\mathrm{Ni}^{2+}+\mathrm{Ni}(s)$ couple
$\mathrm{Ni}^{2+}+2$ glycine ${ }^{-} \leftrightharpoons \mathrm{Ni}(\text { glycine })_{2} K=B_{2}=1.2 \times 10^{11}$
$N i^{2+}+2 e^{-} \rightleftharpoons N i(s) E=-0.236 V$ deduce the value of E° for the reaction.
$N i(\text { glycine })_{2}+2 e^{-}=N i(s)+2$ glycine ${ }^{-}$

QUESTION THREE (20 MARKS)

(a) (i) Discuss the principle involved in the titration of silver nitrate solution with sodium chloride solution usingpotentiometric technique.
(ii) A 100 ml solution containing 0.1 MNaCl was titrated with $0.1 \mathrm{M} \mathrm{AgNO}_{3}$ and the voltage of cell shown in figure below was monitored. The equivalence volume is $\mathrm{V}_{\mathrm{c}}=100 \mathrm{ml}$. calculate the voltage after the addition of:
(I) $\quad 65.0 \mathrm{ml}$ of AgNO_{3}
[3 marks]
(II) $\quad 135.0 \mathrm{ml}$ of AgNO_{3}
[2 marks]

CHEM 425

(b) (i) Explain how the contribution of the analyte to the migration current and convection current is made negligible during experimental involving polarography.
[3 marks]
(ii) Figure below shows cyclic voltammogram for a solution that is $6.0 \mathrm{mM}^{2} \mathrm{~m}_{3} \mathrm{Fe}$ $(\mathrm{CN})_{6}$ and 1.0 M in KNO_{3} using polished stationary platinum electrode as working electrode and SCE as reference electrode.
(I) Explain why a tiny anodic current was observed at the initial potential of +0.8 V which immediately decreased to zero as the scan continued.
[$1 / 2$ mark]
(II) Explain why the current was not observed between a potential of +0.7 and +0.4 V .
[$1 / 2$ mark]

CHEM 425

(III) Give reason to why when the potential became less positive than +0.4 V , a cathodic current started to develop.
[1 mark]
(IV) Discuss various process occurring in region B D, DF and FJ.[4 marks]

QUESTION FOUR (20 MARKS)

(a) (i) Explain how chronopotentiometry can be distinguished from constant - current coulometric analysis and coulometrictitrimetry. [1 mark]
(ii) Briefly discuss the working principle of chronopotentiometry. [8 marks]
(b) Differentiate between controlled potential (Potentiostic) coulometry and controlled current (amperostatic) coulometry.
(c) Explain briefly how chlorine can be detected using amperometry. [3½ marks]
(d) State five characteristics of overvoltage caused by charge transfer polarization.
[2½ marks]
(e) (i) The following cell has a resistance of 4.00Ω. Calculate the potential when 1 E is producing a current of 0.100 A
$\mathrm{Cd} / \mathrm{cd}^{2+}(0.01 \mathrm{M}) / / \mathrm{Cu}^{2+}(0.01 \mathrm{M}) / \mathrm{Cu}$
$\mathrm{Cu}^{2+}+2 e \rightleftharpoons \mathrm{Cu}(s) \quad E^{\circ}$ at $25^{\circ} \mathrm{C}=+0.337$
$C d^{2+}+2 e^{-} \rightleftharpoons C d(s) \quad E^{\circ}$ at $25^{\circ} \mathrm{C}=-0.403$
[11/2 marks]
(ii) Calculate the potential required to generate a current of 0.1 A in the reverse direction in the cell shown in question e(i).
[1 mark]

